Body Electric Apparatus (K5-4G63-4G69-2.5TCI Left Hand Drive)

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 1 2
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 2 3
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 3 4
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 4 5
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 5 6
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 6 7
1\# Fuse Box (Gasoline) 9
2\# Fuse Box (Gasoline) 11
Battery Starter Engine 13
Engine Electronic Control System 14
Anti-theft Airbag 16
4-loop Airbag System 17
ABS EBD Electronic Control System 18
TCS Electronic Control System 19
Reversing Radar Reversing Image 20
AWD Electronic Control System 21
Electric Horn Intrument Cluster 22
Cigar Lighter Electric Rearview Mirror Rear Wiper Washer 23
DVD Player (1) 24
DVD Player (2) 25
Air Conditioner (1) 26
Air Conditioner (2) 27
Power Door and Window (with anti-pinch function) 28
Power Door and Window (without anti-pinch function) 30
Power Electric Heating Seats Power Socket Sunroof 31
Central Door Lock 32
Body Control Mechanism 32
Reversing Image System 39
Lighting System 41
Relationship between Wiring Harnesses and Connector Connection Number Chart (4G63/4G69) 44
Relationship between Wiring Harnesses and Connector Connection Number Chart (2.5TCI) 45
BCM Light Front Washer and Wiper 46

Function Chart for Numbered Pins

of Intermediate Connection of Wiring Harness 1

Connecting Power Supply Wiring Harness 1

$3^{1} B / R$

Connecting Power Supply
Wiring Harness B

Connecting Engine Wiring Harness 1

Connecting Engine Wiring Harness 2

Connecting Instrument Wiring Harness 2

Connecting Engine Compartment Wiring Harness 1

Connecting Engine Compartment Wiring Harness 1

Connecting Engine Compartment Wiring Harness 2

Connecting Engine Compartment Wiring Harness 2

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 2

Connecting Instrument Panel and Console Wiring Harness 1

Connecting Engine Compartment Wiring Harness 1

$\begin{aligned} & 135 \\ & 0.85 \\ & L / W \\ & \hline \end{aligned}$	$\begin{gathered} \hline 511 \\ 0.5 \\ \mathrm{~L} / \mathrm{B} \\ \hline \end{gathered}$			$\begin{aligned} & 315 \\ & 21.0 \\ & \text { Br } \end{aligned}$	$\begin{aligned} & 29 \\ & 1.25 \\ & L / Y \end{aligned}$
$\begin{aligned} & 36 \\ & 3.5 \\ & 0.5 \\ & \text { YR } \end{aligned}$			E44 O.5 R / Y	D 44 0.5 R / L	$\begin{gathered} 35 \\ { }_{1.25}^{Y} \end{gathered}$
		\square	\square	$\begin{aligned} & \hline 613 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \hline 614 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{Br} \end{aligned}$
$\begin{aligned} & 612 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 611 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 610 \\ & 0.5 \\ & G / R \end{aligned}$	609 0.5 G / B	$\begin{aligned} & 50 \mathrm{Y} \\ & 2.0 \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 615 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$

Connecting Engine Compartment Wiring Harness

37 0.5 G/W	261 2.0 R			$\begin{aligned} & \text { T01 } \\ & 0.5 \\ & \text { Br/L } \end{aligned}$	$\begin{aligned} & \hline \text { T02 } \\ & 0.5 \\ & \mathrm{Br} \end{aligned}$
12	7	6	162E	T42	T41
0.5	0.85	0.85	0.5	0.5	0.5
Gr/B	B/W	W/G	B/Y	Br/W	Br / R
69		\square		T31	T32
0.85	${ }_{0.5}$			0.5	0.5
G/Y	G/B			Br / Y	$\mathrm{Br} / \mathrm{Gr}$
42	5	13	316	T52	T51
0.85	0.5	0.5	2.0	0.5	0.5
G/V	W/L	Gr/R	Br	Br/B	Br/G

Connecting Instrument Wiring Harness 2

Connecting MT Wiring Harness Assembly

Connecting Instrument Wiring Harness

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 3

Connecting Instrument Wiring Harness 4

\rightarrow					
$\begin{aligned} & 46 \\ & 0.5 \\ & W / R \end{aligned}$	$\begin{aligned} & 402 \\ & 0.5 \\ & W / B \end{aligned}$			$\begin{aligned} & 47 \\ & 0.5 \\ & Y / B \end{aligned}$	$\begin{aligned} & \hline 71 \\ & 0.35 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$
$\begin{aligned} & 281 . \\ & 0.35 \\ & 6 / Y \end{aligned}$	$\begin{aligned} & 311 \\ & 0.35 \\ & \mathrm{R} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & \mathrm{E} 44 \\ & 0.35 \\ & \mathrm{R} / \mathrm{L} \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 0.85 \\ & 0 \end{aligned}$	$\begin{aligned} & 63 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{Gr} \end{aligned}$	401 0.5 L
$\begin{aligned} & 282 . \\ & 0.35 \\ & \mathrm{G} / \mathrm{L} \end{aligned}$	$\begin{aligned} & 75 \\ & 0.5 \\ & 1 / R \end{aligned}$	$\begin{aligned} & 1044 \\ & 0.35 \\ & \mathrm{R} / \mathrm{L} \end{aligned}$		$\begin{aligned} & 116 \\ & 0.5 \\ & \mathrm{R} / \mathrm{W} \end{aligned}$	
	$\begin{aligned} & 79 \\ & 0.5 \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} 403 \\ 1.25 \\ R \end{gathered}$	404 0.5 Br	$\begin{aligned} & 95 \\ & 0.5 \\ & \mathrm{~L} / 0 \end{aligned}$	$\begin{aligned} & 173 \\ & 0.5 \\ & \mathrm{R} / \mathrm{F} \end{aligned}$

Connecting Engine Compartment Wiring Harness 4

Connecting Instrument Wiring Harness 3

29 1.25 L / Y	$\begin{gathered} 302 \\ 0.35 \\ Y / W \\ \hline \end{gathered}$	$\begin{aligned} & 301 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{R} \\ & \hline \end{aligned}$			$\begin{aligned} & 300 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 122 \\ & 0.5 \\ & G / R \end{aligned}$
		$\begin{aligned} & 438 \\ & G / W \\ & 0.5 \end{aligned}$	$\begin{gathered} 423 \\ V \\ 0.5 \end{gathered}$	164 0.5 L/B	310 0.5 L	442 0.5 G
$\begin{array}{\|c\|} \hline 405 \mathrm{Br} / \mathrm{W} \\ 0.5 \end{array}$	$\begin{aligned} & 34 W \\ & 1.25 \end{aligned}$	$\begin{aligned} & 439 \\ & \mathrm{R} / \mathrm{L} \\ & 0.75 \end{aligned}$	$\begin{gathered} 173 \\ 0.85 \\ \mathrm{R} / \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & 451 \\ & 0.5 \\ & R / W \end{aligned}$	452 0.5 R/L	$\begin{aligned} & 517 \\ & 0.5 \\ & \mathrm{G} / 0 \\ & \hline \end{aligned}$
150 3.0 R/L		155 3.0 W/R		4 3.0 R / G		

Connecting Engine Compartment Wiring Harness 3

C11

Connecting Floor Wiring Harness 1A

$\begin{aligned} & 260 B \\ & 2.0 \\ & \mathrm{R} / \mathrm{G} \end{aligned}$	$\begin{aligned} & 8 \\ & 0.85 \\ & 0 / 6 \end{aligned}$	$\begin{aligned} & 30 \\ & 0.85 \\ & \mathrm{Y} / \mathrm{L} \end{aligned}$	$\begin{aligned} & 18 \\ & 0.35 \\ & \mathrm{~W} \end{aligned}$
	$\begin{aligned} & 26 \\ & 0.85 \\ & Y / R \end{aligned}$	$\begin{aligned} & 33 \\ & 0.85 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 163 \\ & 1.25 \\ & L / R \end{aligned}$
$\begin{aligned} & 155 \\ & 3.0 \\ & \mathrm{~W} / \mathrm{R} \end{aligned}$	$\begin{aligned} & 32 \\ & 0.85 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.85 \\ & Y / W \end{aligned}$	
	$\begin{aligned} & 60 B \\ & 0.85 \\ & G / R \end{aligned}$	$\begin{aligned} & 22 \\ & 0.85 \\ & \mathrm{R} / \mathrm{Y} \end{aligned}$	
	$\begin{aligned} & 21 \\ & 0.85 \\ & 6 \end{aligned}$	$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$	$\begin{aligned} & \text { B33 } \\ & 0.85 \\ & \text { R/B } \end{aligned}$

Connecting Floor Wiring Harness 1B

Connecting Instrument Wiring Harness 1A

Connecting Instrument Wiring Harness 1B

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 4

Connecting Roof Wiring Harness

| 155 21 A
 2.0 0.85
 WR
 G | | T 41
 0.5
 Br / R | 12
 0.5
 Gr / B | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42A | T 42 | 504 | B 24 | 34 | 13 |
| 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| G / V | Br / W | V / L | Gr / W | W | Gr / R |

Connecting Right Front Door Wiring Harness 1

24				
0.85			7E B / E	
0.85	6 E B / W	W/G W		
261	18 C	26	50 M	29 B
2.0	0.85	0.85	2.0	0.85
R	R / L	Y / R	B	B / Y

Connecting Right Front Door Wiring Harness 2

$\begin{aligned} & 135 \\ & 0.85 \\ & \mathrm{~L} / \mathbb{W} \end{aligned}$			$\begin{aligned} & 163 \\ & 0.5 \\ & L / R \\ & \hline \end{aligned}$	$\begin{aligned} & 504 \\ & 0.5 \\ & \mathrm{~V} / \mathrm{L} \end{aligned}$
	$\begin{aligned} & 50 \\ & 0.85 \\ & B \end{aligned}$	34 0.5 W		

Connecting Cockpit Wiring Harness

$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \mathrm{T} 41 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$			$\begin{aligned} & 21 \\ & 0.85 \\ & G \end{aligned}$	
13	34	B24	504	T24	42A
0.5	0.5	0.5	0.5	0.5	0.5
Gr/R	W	Gr / W	V/L	Br / W	GN

Connecting Cockpit Wiring Harness 1

6 0.85 W/G	0.85 B/W			24 0.85 B/G
29	50	26	18	261
0.85	2.0	0.85	0.85	2.0
L/Y	B	Y/R	R/L	R

Connecting Floor Wiring Harness 2

69 0.85 G/Y	$\begin{aligned} & 36 \\ & 0.5 \\ & Y / R \end{aligned}$			$\begin{aligned} & 35 \\ & 1.25 \\ & Y \end{aligned}$
50 L	612	611	610	609
1.25	0.5	0.5	0.5	0.5
B	G/Br	G/L	G/R	G/B

Connecting Chassis Wiring Harness

Connecting Cockpit Wiring Harness

B12 0.5 Gr/B	$\begin{aligned} & 7 \\ & 0.85 \\ & B / W \end{aligned}$			$\begin{aligned} & \hline \text { T01 } \\ & 0.5 \\ & \mathrm{Br} / \mathrm{L} \end{aligned}$	$\begin{aligned} & \hline \text { T02 } \\ & 0.5 \\ & \mathrm{Br} \end{aligned}$
B22	6	29	504		34
0.5	0.85	0.85	0.5	60 A 0.5	0.5
Gr/w	W/G	L/Y	V/L	G/R	W

Connecting Left Front Door Wiring Harness 1

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 5

$\begin{gathered} \hline 260 \mathrm{~B} \\ \mathrm{R} / \mathrm{G} \\ \hline \end{gathered}$	$\begin{aligned} & 155 \\ & 2.0 \\ & \text { W/R } \end{aligned}$	\bigcirc	$\begin{aligned} & 18 \\ & 0.5 \\ & R / L \\ & \hline \end{aligned}$	50 U 2.0 B
$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 13 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{R} \end{aligned}$	$\begin{gathered} 22 \\ 0.85 \\ \mathrm{R} / \mathrm{Y} \end{gathered}$	$\begin{aligned} & 21 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.85 \\ & \text { Y/W } \end{aligned}$

Connecting Left Front Door Wiring Harness 2

$\begin{aligned} & 50 \\ & 2.0 \\ & B \end{aligned}$	$\begin{aligned} & 18 \\ & 0.85 \\ & \text { R/L } \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 260 \\ & 2.0 \\ & R / G \end{aligned}$
20	21	22	13	12
0.85	0.85	0.85	0.85	0.85
Y/W	G	R/Y	Gr/R	Gr/B

Connecting Cockpit Wiring Harness 2

Connecting Right Rear Door Wiring Harness

261		
2.0		
R		
7	50	6
0.85	2.0	0.85
B/W	B	WIG

Connecting Cockpit Wiring Harness

T 31			
0.5			504 0.5 Wr / Y W / L
T 32	34		18 A
0.5	0.5		0.85
$\mathrm{Br} / \mathrm{Gr}$	W / B		R / L

Connecting Right Rear Door Wiring Harness

Connecting Cockpit Wiring Harness

$\begin{aligned} & \text { 6C } \\ & 0.85 \\ & \text { W/G } \end{aligned}$	155 2.0 W/R			$\begin{aligned} & \text { 50B } \\ & 2.0 \\ & B \end{aligned}$	$\begin{aligned} & \text { 260A } \\ & 2.0 \\ & \text { R/G } \end{aligned}$
T51	T52	7C	34	5	18B
0.5	0.5	0.85	0.5	0.5	0.85
Br / G	Br / B	B/W	W	V/L	R/L

[^0]| $\begin{aligned} & 260 \\ & \text { 2.0 } \\ & \text { R/G } \end{aligned}$ | 50 2.0 B | | | | $\begin{aligned} & 6 \\ & 0.85 \\ & \text { WIG } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 504 | 34 | 7 | T52 | T51 |
| 0.85 | 0.5 | 0.5 | 0.85 | 0.5 | 0.5 |
| R/L | V/L | W | B/W | Br/B | Br/G |

[^1]
Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 6

Connecting Tail Gate Transition Wiring Harness

Connecting Cockpit Wiring Harness

Connecting Tail Gate

Connecting Tail Gate Transition Wiring Harness

Connecting Tail Gate Transition Wiring Harness

Connecting Cockpit Wiring Harness

Connecting Transition Wiring Harness 1

Connecting Transition
Wiring Harness 2

Connecting Reversing Radar Wiring Harness 1

Connecting Reversing Radar Wiring Harness 2

1\# Fuse Box (Gasoline)

Fuse Box Label

Layout Chart of Fuse Box Leading-out Terminals

(C)

Connecting Fuse Box A (OId)

Connecting Fuse Box A (New)

Connecting Fuse Box C

Connecting Fuse Box B

Connecting 1\# Fuse Box D

2\# Fuse Box (Gasoline/Diesel Oil)

Fuse Box Label

Layout Chart of Fuse Box Leading-out Terminals

Connecting 2\# Fuse Box D

Connecting 2\# Fuse Box B

Connecting 2\# Fuse Box G

Battery Starter Engine

Engine Electronic Control System

Connecting Engine ECU

9-loop Airbag System

Connecting Instrument Panel and Console Wiring Harness

Pretensioned Seat Belt C252 G17 143 E1

Passenger Seat Belt Switch
H:DJ7021-2.3-21
Pretensioned Seat Belt

ABS EBD Electronic Control System

TCS Electronic Control System

Reversing Radar Reversing Image

To DVDcl-1 Pin \quad To DVDel-4 Pin

Connecting Reverse Camera H:MG610159

Connecting Left Probe

Connecting Middle Left Probe

Connecting Cockpit
Wiring Harness

Connecting Middle Right Probe

Connecting Right Probe

AWD Electronic Control System

Central Control Switch

Electric Horn Intrument Cluster

Right Electric Horn

Instrument Cluster A
H:1318389-1

Cigar Lighter Electric Rearview Mirror Rear Wiper Washer

DVD Player (1)

Connecting Wire Control Transition Wiring Harness

USB Port

DVD Player A

Connecting Left Connecting Right Connecting Left Front Speaker Front Speaker Rear Speaker

Connecting DVD
(the direction of this connector is the wire outgoing direction)

Connecting Right Rear Speaker

Connecting Antenna

119	$C 44$	400	403 B
0.5	0.5	0.5	1.25
R	R / L	L	R
120	163	45	50
0.5	0.85	0.5	0.85
G	L / R	G / V	B

CD Player A

Air Conditioner (1)

Air Conditioner Cold and Warm Air Actuator H:DJ7072-3-21

Air Conditioner Mode Actuator H:DJ7072-3-21

Evaporator Temperature Sensor

Speed-adjusting Module

Inner and Outer Cycle Actuator

Air Conditioner (4D20 Model)

Left Front Door Integrated Door Lock Assembly (Locking Mechanism)

Left Front Regulator (Swing Mechanism)

Right Front Door Integrated Door Lock Assembly (Locking Mechanism)

Right Front Regulator (Swing Mechanism)

Left Rear Door Integrated Door Lock Assembly (Locking Mechanism)

Left Rear Regulator (Swing Mechanism)

Right Rear Door Integrated Door Lock Assembly (Locking Mechanism) CD-H054

Right Rear Regulator (Swing Mechanism)

 Left Front Regulator Switch CD-H033
 (without anti-pinch function)

Right Front Regulator Switch (with anti-pinch function)

Right Front Regulator Switch CD-H032
(without anti-pinch function)

Left Rear Regulator Switch CD-H034
(with anti-pinch function)

Left Rear Regulator Switch CD-H034
(without anti-pinch function)

Right Rear Regulator Switch CD-H034
(without anti-pinch function)

Right Rear Regulator Switch (with anti-pinch function)

Power Door and Window (without anti-pinch function)

Power Electric Heating Seats Power Socket Sunroof

Central Door Lock

Function Introduction

1. Locking

Body control mechanism will implement the locking function under the following conditions.
(a) Locking by Remote Key

Body control mechanism has received the "Locking by Remote Key" command successfully, and all doors are closed.
(b) Locking Door by Speed Sensing

When vehicle speed is up to the scalable speed (with $15 \mathrm{~km} / \mathrm{h}$ as its initial value), the current door lock state is "unlocked", and all doors are closed.
(c) Automatic Defense

If no key has been inserted in the ignition lock, and when unlocking doors remotely, locking is implemented when all doors do not show any action.
(d) Central Control Switch Locking

When locking by pressing the main control locking switch, all doors are locked by the body control mechanism.
(e) Manual Locking by Key

Rotate the driver's door key to the locking position.
2. Unlock

Body control mechanism will implement the unlocking function under the following conditions.
(a) Unlocking by Remote Key

Body control mechanism has received the "Unlocking by Remote Key" command successfully.
(b) Unlocking by Collision

When ignition switch is at the ON or START position, body control mechanism will unlock for five times within three seconds after any collision signal has been received;
When ignition switch is at the ON or START position, body control mechanism will unlock for five times within three seconds after any abnormal airbag signal has been detected.
Special notice: locking is unavailable when the unlocking signal from airbag collilion is invalid, then, the ignition switch is required to be rotated from LOCK to ON then to LOCK continuously, so as to restart the locking function.
(c) Central Control Switch Unlocking

When unlocking by pressing the central control unlocking switch, all doors will be unlocked by the body control mechanism.
(d) Manual Unlocking by Key

Rotate the driver's door key to the unlocking position.
(e) Unlocking by Pulling out the Key

When the current central door lock state is "Locked", and the key is transformed to the "Pull out" state from the "Inserted" state, unlock.
3. Anti-mislocking Function

Door lock is under the "Locked" state, then, any door, from the "opened" state to the "closed" state, unlocking action will be conducted once.

Body Control Mechanism

Function Description

Body Control Mechanism (BCM) realizes the intelligent control and functions of body electric apparatus, including the following content in details:

1. Working of exterior and interior lights, such as the high-beam and low-beam lights, sidelight, license plate light, front and rear fog lights, brake light, hazard warning light, turn light, door light, ceiling light and foot light are realized by operating their switches.
Relevant tips are given by instrument cluster. And such lighting functions as Automatic Lighting, Follow Home, Follow Vehicle are realized by rain and light sensors and the corresponding logics;
2. For off-line configured vehicles, high-speed, low-speed and interval logic control of wiper can be realized by operating the wiper switch, and automatic wiper function can be realized with the cooperation of rain and light sensors.
3. Remote control function, that is, the locking, window closing and vehicle finding functions can be realized by the three remote control buttons;
4. Central door lock control, back door unlocking, unlocking by collision, automatic locking when speed is higher than $15 \mathrm{~km} / \mathrm{h}$, and anti-mislocking can be realized;
5. Remote window closing is realized by pressing the locking button for long; functions as anti-pinch, horn alarming and prompting functions are available;
6. Electric four-wheel-drive front axle control and 4WD indicator prompting functions are available;
7. The system is provided with such functions as power management, high and low voltage protection, delayed breaking off and system dormancy.
System Composition

BCM Interface Definition View and Pin Definition

No.	Pin No.	PIN Definition	I/O Characteristics
1	J1-B1	BCM_PWR	Power
		Body Control Mechanism Power Supply	
2	J1-B2	Rear_Brake_Light	O-H(P)
		Rear Brake Light	
3	J1-B3	Daytime_Running_Light	O-H(P)
		Daytime Running Light	
4	J1-B4	BCM_GND	Ground
		Ground	
5	J1-B5	Rear_Fog_Light	O-H(P)
		Rear Fog Light	
6	J1-B6	Turn_Light_Right	O-H(P)
		Right Turn Light	
7	J1-B7	Turn_Light_Left	O-H(P)
		Left Turn Light	
8	J1-B8	HZ_PWR	Power
		Turn Light Power Supply	
9	J1-A1	2WD_4WD_Indicator	O-L
		2WD/4WD Indicator	
10	J1-A2	Hazard_Indicator	O-H
		Hazard Indicator on Switch	
12	J1-A4	Backlight_Illumination	O-H(P)
		Backlight Illumination	
13	J1-A5	Position_Light_Left	O-H(P)
		Left Position Light	
14	J1-A6	Position_Light_Right	O-H(P)
		Right Position Light	
15	J1-A7	Rear_Defroster_Relay	O-L
		Rear Defroster Relay	
16	J1-A8	Front_Wiper_Power_Relay	O-L
		Front Wiper Power Relay	
17	J1-A9	Door Status indicator	O-L
		Door Status indicator on Instrument	
18	J1-A10	Horn_Control_Relay	O-L
		Horn Control Relay	
19	J1-A11	Low_Beam_Relay	O-L
		Low Beam Relay	
21	J1-A13	Trunk_Unlock_Relay	O-L
		Rear Hatch Unlock Relay	
22	J1-A14	High_Beam_Relay	O-L
		High Beam Relay	
23	J1-A15	Front_Wiper_Speed_Relay	O-L
		Front Wiper Speed Relay	
24	J1-A16	Door_Lock_Relay	O-L
		Central Control Locking Relay	
25	J1-A17	Door_Unlock_Relay	O-L
		Central Control Unocking Relay	
26	J1-A18	Battery_Saver_Relay	O-L
		Battery Saver Relay	
27	J1-A19	License_Plate_Light_Relay	O-H
		License Plate Light Relay	
28	J1-A20	Front_Fog_Light_Relay	O-L
		Front Fog Light Relay	

45	J1-A37	LIN1	Comm
47	J1-A39	HS_CAN (H)	Comm
49	J1-A41	Backlight_adjust_Sw	I-A
		Backlight Adjustment Switch	
51	J1-A43	LIN2	Comm
53	J1-A45	HS_CAN (L)	Comm
56	J1-A48	Hazard_Light_Sw	I-D-L
		Hazard Warning Light Switch	
57	J2-B1	2WD_4WD_Transfer_B	In-Relay
		2WD/4WD Transfer B	
58	J2-B2	RLY_PWR	Power
		Internal Relay Power	
60	J2-B4	BCM_GND	Ground
61	J2-B5	2WD_4WD_Transfer_A	In-Relay
		2WD/4WD Transfer A	
62	J2-B6	BCM_GND	Ground
63	J2-B7	Front_Wash_Motor	O-H
		Front Wash Motor	
64	J2-B8	Interior_Light	O-L
		Interior Light	
65	J2-A1	Turn_Left_Light_Sw	I-D-L
		Left Turn Light Switch	
66	J2-A2	FL_Door_Ajar	I-D-L
		Left Front Door Microswitch	
67	J2-A3	FR_Door_Ajar	I-D-L
		Right Front Door Microswitch	
68	J2-A4	RL_Door_Ajar	I-D-L
		Left Rear Door Microswitch	
69	J2-A5	Light_Sw_Position	I-D-L
		Position Light Switch	
70	J2-A6	Light_Sw_Auto	I-D-L
		Light Switch Automatic Position	
71	J2-A7	Trunk_Ajar	I-D-L
		Rear Hatch Microswitch	
72	J2-A8	RR_Door_Ajar	I-D-L
		Right Rear Door Microswitch	
73	J2-A9	Turn_Right_Light_Sw	I-D-L
		Right Turn Light Switch	
75	J2-A11	Light_Sw_HighBeam	I-D-L
		High-beam Light Switch	
76	J2-A12	Front_Wiper_Sw_Auto	I-D-L
		Front Wiper Switch Automatic Position	
77	J2-A13	Front_Wiper_Sw_Low	I-D-L
		Front Wiper Switch Low-speed Position	
78	J2-A14	Master_Lock_Sw	I-D-L
		Central Control Locking Switch	
80	J2-A16	Front_Washer_Sw	I-D-L
		Front Washer Switch	
81	J2-A17	2WD_4WD_Pos_FB	I-D-L
		2WD/4WD Position Feedback	
82	J2-A18	Rear_Defroster_Sw	I-D-L
		Rear Defroster Switch	
83	J2-A19	2WD_4WD_Select_Sw	I-D-L
		2WD/4WD Select Switch	

84	J2-A20	Trunk_Release_Sw	I-D-L
		Rear Hatch Release Switch	
87	J2-A23	Front_Wiper_Sw_High	I-D-L
		Front Wiper High-speed Switch	
88	J2-A24	Rear_Fog_Light_Sw	I-D-L
		Rear Fog Light Switch	
89	J2-A25	Brake_Pedal_Sw	I-D-H
		Brake Pedal Switch	
90	J2-A26	ACC	I-D-H
91	J2-A27	ON	I-D-H
93	J2-A29	Key_Inserted_Sw	I-D-L
		Key Inserted Detection Switch	
95	J2-A31	Post_Crash_Input	I-D-L
		Collision Unlocking Signal	
96	J2-A32	Light_Sw_LowBeam	I-D-L
		Low-beam Light Switch	
97	J2-A33	Master_Unlock_Sw	I-D-L
		Central Control Unlocking Switch	
98	J2-A34	Front_Fog_Light_Sw	I-D-L
		Front Fog Light Switch	
99	J2-A35	START	I-D-H
101	J2-A37	Brake_Pedal_Fuse_FB	I-D-H
		Brake Pedal Fuse Feedback	
103	J2-A39	Front_Wiper_Park_Sw	I-D-L
		Front Wiper Park Switch	
107	J2-A43	RF_Antenna	Comm
		Antenna	
108	J2-A44	Key_Cylinder_Sw	I-D-L
		Driver-side Door Key Switch	
110	J2-A46	Vehicle_Speed_Input	I-D-L
		Vehicle Speed Signal	

Input/Output (shortened)	English	Chinese Explanation
O-H-(-P)	Output, High-Side Driver (Power = High current)	High-side driver output, P represents high power, namely high current
O-L-(-P)	Output, Low-Side Driver (Power = High current)	Low-side driver output, P represents high power, namely high current
I-A	Input, Analog	Analog Input
I-D-L	Input, Digital, Active Low	Digital input is low, with internal pull-up
I-D-H	Input, Digital, Active High	Digital input is high, without internal pull-up
-WU	Wake-up input	Wake-up Input
-	N/A	Null, not used
In-Relay	Internal Relay	Internal Relay
Comm	Communication Port	Communication Port

Index of Fault Information

Pin Pin No.	Fault Description	$\begin{gathered} \mathrm{Pin} \\ \text { Pin No. } \end{gathered}$	Fault Description
J1-A1	2WD/4WD indicator is short to ground or with open circuit	J1-B6	One 21W bulb of right turn light is invalid
	$2 \mathrm{WD} / 4 \mathrm{WD}$ indicator is short to power suply		Right turn light is with open circuit
J1-A2	Hazard warning light indicator is short to power supply or with open circuit		Right turn light is overloaded or short to ground
	Hazard warning light indicator is short to ground	J1-B7	One 21W bulb of left turn lights is invalid
J2-B7	Front wash motor output is with open circuit		Left turn light is with open circuit
	Front wash motor output is short to power supply		Left turn light is overloaded or short to ground
	Front wash motor output is short to ground	J1-B8	Hazard power supply voltage is too low
J1-A5	Left position light is short to power supply or with open circuit		Hazard power supply voltage is too high
	Left position light is short to power supply	J2-B2	RLY power supply is with open circuit or invalid internal relay
	Left position light is short to ground or with open circuit	J2-B7	Switch backlight is short to power supply or with open circuit
J1-A6	Right position light is short to power supply or with open circuit		Switch backlight is short to power supply
	Right position light is short to power supply		Switch backlight is short to ground or overloaded
	Right position light is short to ground or with open circuit	J2-B8	Interior light output is short to power supply or with open circuit
J1-A7	Rear fog light is short to ground or with open circuit		Interior light output is short to power supply or overloaded
	Rear fog light is short to power supply	N/A	Anti-pinch module has no match
J1-A8	Front wiper power relay is short to ground or with open circuit	J1-A19	License plate light output is short to power supply or with open circuit
	Front wiper power relay is short to power supply		License plate light output is short to ground
J1-A9	Door status indicator is short to power supply or with open circuit	N/A	Hall sensor of left rear anti-pinch module is invalid
	Door status indicator is short to ground	N/A	Relay of left rear anti-pinch module is invalid
J1-A10	Horn relay is short to ground or with open circuit	N/A	Hall sensor of right rear anti-pinch module is invalid
	Horn relay is short to power supply	N/A	Relay of right rear anti-pinch module is invalid
J1-A11	Low-beam light relay is short to ground or with open circuit	N/A	Hall sensor of left front anti-pinch module is invalid
	Low-beam light relay is short to power supply	N/A	Relay of left front anti-pinch module is invalid
J1-A13	Rear door unlocking relay is short to ground or with open circuit	N/A	Hall sensor of right front anti-pinch module is invalid
	Rear door unlocking relay is short to power supply	N/A	Relay of right front anti-pinch module is invalid
J1-A14	High-beam light relay is short to ground or with open circuit	N/A	Left rear control switch of master switch is invalid
	High-beam light relay is short to power supply	N/A	Right rear control switch of master switch is invalid
J1-A15	Front wiper speed relay is short to ground or with open circuit	N/A	Left front control switch of master switch is invalid
	Front wiper speed relay is short to power supply	N/A	Right front control switch of master switch is invalid
J1-A16	Central control door locking relay is short to ground or with open circuit	N/A	Hardware of rain sensor module is invalid
	Central control door locking relay is short to power supply	N/A	Sensor of rain sensor module is invalid
J1-A17	Central control door unlocking relay is short to ground or with open circuit	N/A	Temperature of rain sensor module is invalid
	Central control door unlocking relay is short to power supply	N/A	Initialization of rain sensor module is failed
J1-A18	Battery saver relay is short to ground or with open circuit	N/A	Power supply voltage of rain sensor module is invalid
	Battery saver relay is short to power supply	N/A	No response to LIN signal of left rear anti-pinch module
J1-A20	Front fog light relay is short to ground or with open circuit	N/A	No response to LIN signal of right rear anti-pinch module
	Front fog light relay is short to power supply	N/A	No response to LIN signal of left front anti-pinch module
J1-A37	LIN communication channel 1 is short to ground	N/A	No response to LIN signal of right front anti-pinch module
J1-A43	LIN communication channel 2 is short to ground	N/A	No response to LIN signal of rain sensor module
J2-A17	2WD/4WD Transfer is unable to be in place	N/A	No response to LIN signal of master switch
J2-A31	Collision signal input waveform is invalid	N/A	LIN signal of rain sensor module is wrongly received
J2-A37	Brake pedal fuse is with open circuit	N/A	LIN signal of left rear anti-pinch module is wrongly received
J2-A39	Rotation of front wiper motor is stuck	N/A	LIN signal of right rear anti-pinch module is wrongly received
J1-B1	BCM power supply voltage is too low	N/A	LIN signal of left front anti-pinch module is wrongly received
	BCM power supply voltage is too high	N/A	LIN signal of right front anti-pinch module is wrongly received
J1-B2	Rear brake light is short to power supply or with open circuit	N/A	LIN signal of master switch is wrongly received
	Rear brake light is short to power supply		
	Rear brake light is short to ground or overloaded		
J1-B5	Rear fog light is short to power supply or with open circuit		
	Rear fog light is short to power supply		
	Rear fog light is short to ground or overloaded		

Maintenance Guidance

1. System Diagnosis

Connect X431 to the vehicle diagnosis port, rotate the ignition switch from LOCK to ON position, read fault codes from the fault code reading interface, and recognize if body control mechanism is normal, so as to show the fault repair range.
2. Fault Code Clearing

X431 enters the fault clearing interface to clear fault codes by operation, and the ignition switch is turned to LOCK from ON. Real fault codes still exist.
3. Action Test

X431 enters the off-line action interface to force the output mechanism to work by operation, thus distinguishing input problems from output faults.
4. Data Flow Reading

X431 enters data flow reading interface to check each input or output status by operation, thus helping to analyze problems.
Repair Notice

1. Familiar with system composition.
2. Do not connect uncertain dummy load at will.
3. Do not jumper wires at will.
4. Conduct diagnosis, measurement and repair with X431, multimeter and oscilloscope.
5. After finishing repair, it is required to turn the ignition switch from LOCK to ON position, so as to inspect if output of each function is normal.
6. Special Notice
(a) After replacement of BCM, it is required to configure vehicle information code by using X 431 ;
(b) BCM includs various functions, so after replacement of BCM, it is necessary to close all unused functions by using X431 on the basis of vehicle configuration in the procedure as follows:

7. When replacing BCM, conduct remote key learning by using $X 431$ in the procedure as follows:

8. When replacing key, it is required to adopt X 431 for remote key learning.

Reversing Image System

Reversing Image System Function

Take images behind the vehicle through camera, then which will be sent to DVD and displayed, supporting the driver to reverse the vehicle.
Note: ignition lock switch is at "ON" position, DVD power is on, and shift lever is at the reverse gear. Composition of Reversing Image System

Definition of Camera Port

No.	Pin Position Name
1	Video Negative Pole
2	Video Positive Pole
3	Power Negative
4	Power Positive (from Reverse Light)

Wiring Harness Connection Composition and Interface Definition

Technical Parameters

Use Notes

1. When surface of the camera is full of dust or other foreign matters, image effect may be decreased. Please clear them promptly. It is recommended to wipe slightly with soft damp cloth.
2. Do not spray the camera directly by high-pressure water gun.
3. For reversing at night, if it is dark and with no light around, snowflakes may occur to the reversing image due to lack of illumination.

Camera	Working Voltage	(9~16)V DC
	Current Consumption	$100 \mathrm{~mA} / \mathrm{MAX}$
	Working Temperature Range	$(-30 \sim 80)^{\circ} \mathrm{C}$
	Storage Temperature Range	$(-40 \sim 85)^{\circ} \mathrm{C}$
	Image Pixel	300,000 Pixels (color image)
	Signal Amplitude	(1.0 20%) Vpp
	TV System	NTSC
	Video Output Amplitude	$1.0 \mathrm{Vpp} / 75 \Omega$
	Video Range	$\begin{aligned} & \text { V: }(88 \pm 5)^{\circ} \\ & \text { H: }(115 \pm 5)^{\circ} \end{aligned}$
	Minimum Illumination	Below 1.51ux
	Color Amplitude Carrier Frequency	$3.579545 \mathrm{MHz} \pm 200 \mathrm{~Hz}$
	Image Stabilization Time	2Sec/MAX
	Image Resolution	≥ 300

Lighting System

Combination Headlamp Assembly

Replace

1. Seperate the wire connectors of the battery negative pole;
2. Remove the front bumper;

Adjustment

For headlamp aiming adjustment, adjustment of headlamp adjusting screw can help to adjust the headlamp lighting point. Adjustment Description:

1. Position A refers to the left-right adjusting screw of low beam. Rotate it with a crosshead screwdriver clockwise to make the low beam move rightward, otherwise, leftward;
2. Position B refers to the up-down adjusting screw of low beam. Rotate it with a crosshead screwdriver clockwise to make the low beam move downward, otherwise, upward;
3. Position C refers to the up-down adjusting screw of high beam. Rotate it with a crosshead screwdriver clockwise to make the high beam move downward, otherwise, upward;
4. Position D refers to the left-right adjusting screw of high beam. Rotate it with a crosshead screwdriver clockwise to make the high beam move rightward, otherwise, leftward.
Front Fog and Turn Combination Light Assembly
Replace

5. Seperate the wire connectors of the battery negative pole;
6. Unscrew the four securing self-tapping screws, seperate the wire connectors of the front fog and turn combination light, and remove the front fog and turn combination light assembly;
7. Remove the front turn light bulb
(a) Open the bulb stand by counterclockwise rotation (Figure 4);
(b) Rotate the bulb off from the lamp socket;
8. Remove the front fog light bulb
(a) Open the seal cover by counterclockwise rotation (Figure 5);
(b) Pull out the bulb plug;
(c) Release the bulb spring, and then remove the bulb.
9. Mount the front fog and turn combination light assembly

The mounting order of the front fog and turn combination light assembly is opposite to the removal order.

Rear Combination Lamp Assembly

Replace

1. Seperate the wire connectors of the battery negative pole;

2. Remove the four retaining bolts, seperate the wire connectors of rear combination lamp, and remove the upper and lower rear combination lamp assemblies;

3. Remove the rear turn light and reverse light bulbs
(a) Rotate the bulb socket counterclockwise;
(a) Rotate the bubb socket counterclockwise;
4. Light source of the upper rear combination light is light emitting diode, which is unremovable. When the ligh Mount the rear combination lamp assembly
5. Mount the rear combination lamp assembly

The mounting order of rear combination lamp is opposite to the removal order

Rear fog light assembly

Replace

1. Seperate the wire connectors of the battery negative pole Unscrew the three securing self-tapping screws, seperate the wire connectors of the rear fog light, and remove the
rear figh assembly
Light source of the rear fog light is light emitting diode which is unremovable. When the light source is faulty, the whole light shall be replaced
2. Mount the rear fog light assembly

The mounting order of rear fog light is opposite to the removal order.

Relationship between Wiring Harnesses and Connector Connection Number Chart (4G63/4G69)

BCM Light Front Washer and Wiper

Body Electric Apparatus (K5-4D20 Left Hand Drive)

Function Chart for Numbered Pins of Intermediate Connection of Wire Harness 2
Engine Electronic Control System 3
ABS System 5
Airbag Electronic Control System (CAN 4) 6
Instrument Cluster (Circuit Diagram) 7
Tire Pressure Monitoring System (Circuit Diagram) 8
Electric Control Four-wheel Drive Intelligent Four-wheel Drive Central Control Switch 9
BCM 11
Instrument Cluster 13
TPMS (Tire Pressure Monitoring System) 16
Anti-dazzle Rearview Mirror 22

Function Chart for Numbered Pins of Intermediate Connection of Wire Harness

Connecting Oil Temperature Sensor (green)

Connecting Water Temperature Sensor

Connecting Knock Sensor

Oil-water Separation Switch

Connecting 4\# Nozzle

Connecting VGT

Connecting EGR

Connecting 1\# Nozzle

Brake Lamp Switch

Connecting Air Intake pressure sensor

Connecting Glow Plug 1

Connecting Glow Plug 2

Vacuum Valve

Connecting Glow Plug 3

Connecting 2\# Nozzle

Clutch Switch

Connecting

Connecting Accelerator Position Sensor

Diagnostic Equipment

Connecting Crankshaft Position Sensor

ABS System

Airbag Electronic Control System (CAN 4)

Instrument Cluster (Circuit Diagram)

Connecting Instrument Cluster (1)

Connecting Instrument Cluster (2)

Tire Pressure Monitoring System (Circuit Diagram)

$\begin{aligned} & 500 \\ & 2.0 \\ & G \end{aligned}$	$\begin{aligned} & 50 \\ & 2.0 \\ & 3 \end{aligned}$	$\begin{aligned} & 504 \\ & 2.0 \\ & L / R \end{aligned}$	$\begin{aligned} & 67 \\ & 0.5 \\ & L / G \end{aligned}$		$\begin{aligned} & 505 \\ & 0.85 \\ & L / W \end{aligned}$		$\begin{aligned} & 508 \\ & 0.85 \\ & L / G \end{aligned}$			$\begin{aligned} & 502 \\ & 2.0 \\ & G / R \end{aligned}$	$\begin{aligned} & 503 \\ & 2.0 \\ & \mathrm{~B} / \mathrm{L} \end{aligned}$
								$\begin{gathered} 515 \\ Y \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 511 \\ & G / B \\ & 0.5 \end{aligned}$		
$\begin{aligned} & 500 \\ & 2.0 \\ & G \end{aligned}$	502.03		38	67	506	507	509	510	516	502	503
			0.85	0.5	0.85	0.85	0.85	0.85	Y/L	2.0	2.0
			Y/G	L/G	L/B	Gr / W	L	L/Y	0.5	G/R	B/L

Electric Control Four-wheel Drive Controller

Central Control Switch

Electromagnetic Clutch and Speed Sensor

Reverse Switch

Connecting Electromagnetic Coil

Connecting BCM-B

Left Upper
Tail Lamp

Left Lower
Tail Lamp

Right Upper
Tail Lamp

Right Lower
Tail Lamp

Connecting Rain Sensor

Connecting Left Rear Fog Lamp

Connecting Back Door Microswitch

Front Washer Motor

Connecting High
Mounted Stop Lam

Front Wiper

Left Turn Light

Connecting Back Door Lock State Detection

Connecting Back Door
Lock Motor
Lock Motor

Electronic Con-
trol Clutch

$\underset{\text { Fog Lamp }}{\text { Right Front }}$

Connecting Left License Plate Lamp

Instrument Cluster

Element Diagram and Connector Pin Function

Connector Type AMP C 142501-1

Pin No.	Function	Pin No.	Function
1	Anti-theft Indicator	17	Engine Maintenance Indicator
2	Brake System Malfunction Indica- tor Lamp	18	AFS OFF Indicator
3	Engine Malfunction Indicator Lamp	19	
4	Oil Pressure Alarm Indicator	20	
5	ESP OFF Indicator	21	AWD Indicator
6	Tire Pressure Alarm Indicator	22	Battery Charge/Discharge Indica- tor
7	Four-wheel Drive Indicator	23	
8		24	
9	LIN	25	Engine Main Relay
10	CAN Low	26	CAN Low (reserved)
11	CAN High	27	CAN High (reserved)
12		28	Fuel Input
13		29	
14		30	Sensor Ground
15	Body Ground	31	Body Ground
16	Battery Power Supply	32	Ignition Power Supply

Instrument Function

1. Sound Alarm Function
(a) Description of Front Seat Belt Alarm Function

- When ignition switch is switched to ON, if seat belt has not been used by driver or front passenger, instrument buzzer will send out 15 prompt tones (2 s cycle period, tweeting for 0.5 s , interval of 1.5 s), and driver or front passenger's seat belt indicator will be constantly on (front passenger's seat belt indicator is realized by PAB switch). After the seat belt is fastened, the indicator will go out, and the alarm sound will disappear;
- When vehicle speed is up to $25 \mathrm{~km} / \mathrm{h}$, if seat belt has not been used by driver or front passenger, instrument will send out prompt tones again, and alarm continuously (by tweeting every 15 s). In addition, driver or front passenger's seat belt indicator will be constantly on. After the seat belt is fastened, the indicator will go out, and the alarm sound will disappear;
(b) If any door is opened when a key is in the LOCK position of ignition lock, a prompt tone of Key Not Pulled Out will be sent out, and the alarm will continue for one minute before disappearing; the prompt tone will disappear immediately when the key is pulled out or the door is closed.

2. LCD Display

The instrument is equipped with an LCD display to display milage, accumulation, subtotal, door open information, average fuel consumption, cruise speed display, gear information, bulb fault, rain sensor failure, AFS fault, AFS driving mode, engine water temperature alarm, low voltage alarm, and fuel alarm.
3. Speedometer

Checkpoint $(\mathrm{km} / \mathrm{h})$	Indication Angle $\left({ }^{\circ}\right)$	Indication Range $(\mathrm{km} / \mathrm{h})$
40	52	$40.6 \sim 42$
100	130	$100.8 \sim 104$
160	208	$164.8 \sim 167.3$

4. Tachometer

Checkpoint $(\mathrm{r} / \mathrm{min})$	Indication Angle $\left({ }^{\circ}\right)$	Indication Error $(\mathrm{km} / \mathrm{h})$
1000	43.33	± 100
3000	130	± 150
6000	260	± 200

5. Fuel Gauge

Checkpoint	Input Resistance (Ω)	Indication Error $\left({ }^{\circ}\right)$
E	95	± 3
Alarm Point	74	± 3
Alarm Cancelling Point	71	± 3
$1 / 2$	32.5	± 3
F	7	± 3

6. Water Thermometer

Checkpoint	Indication Angle (Ω)	Angle Error $\left(^{\circ}\right)$
$\mathrm{C}\left(50^{\circ} \mathrm{C}\right)$	0	± 3
$1 / 2\left(80-100^{\circ} \mathrm{C}\right)$	45	± 3
Alarm Point $\left(110^{\circ} \mathrm{C}\right)$	78.75	± 3
$\mathrm{H}\left(120^{\circ} \mathrm{C}\right)$	90	± 3

Instrument Working Condition

Working Voltage	$9 \mathrm{~V}-16 \mathrm{~V}$
Test Voltage	13.5 V
Nominal Voltage	12 V
Quiescent Current	$<5 \mathrm{~mA}$
Working Temperature	$-40^{\circ} \mathrm{C} \sim+75^{\circ} \mathrm{C}$
Display Visible	$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
Temperature for all LED On	$-40^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$

Alarm Indicator

No．	Name	Color	Symbol	Input	Signal aspect	Remarks
1	Front Fog Indicator	Green	程	BCM	CAN	
2	Rear Fog Indicator	Yellow	0 O	BCM	CAN	
3	High－beam Indicator	Blue	飺O	BCM	LIN／CAN	
4	Light Main Switch Indicator	Green	－\％${ }^{\circ}$－	BCM	LIN／CAN	
5	Left Turn Indicator	Green	\checkmark	BCM	CAN	
6	Right Turn Indicator	Green	\checkmark	BCM	CAN	
7	Battery Charge／Discharge Indicator	Red	皆岛	Hardwire	Low level	
8	Four－wheel Drive Indicator	Yellow	QWV	Hardwire	Low level	
9	Airbag Indicator	Red	AP	ABM	CAN	
10	Seat Belt Indicator	Red	是	ABM	CAN	
11	Rear Defroster Indicator	Yellow	（19\％	BCM	CAN	
12	Brake System Malfunction Indicator Lamp	Red	（0）	Hardwire	Low level	
13	Park Indicator	Green	p	BCM	LIN	
14	Park Brake Indicator	Red	（P）	BCM	CAN	
15	ABS Indicator	Yellow	（3）	ABS	CAN	
16	EBD Indicator	Yellow	EBD	ABS	CAN	
17	ESP Indicator	Yellow	要	ESP	CAN	
18	ESP Close Indicator	Yellow		Hardwire	Low level	
19	Oil Pressure Alarm Indicator	Red	管寿	Hardwire	Low level	
20	Fuel Alarm Indicator	Yellow	凹	Softwa	control	
21	Engine Malfunction Indicator Lamp	Yellow	0	Hardwire	Low level	
22	Engine Maintenance Indicator	Yellow	5	Hardwire	Low level	
23	Anti－theft Indicator	Red	$5{ }^{1}$	Hardwire	Low level	
24	Engine Preheat Indicator	Yellow	80	ECM	CAN	
25	Oil－water Separation Indicator	Red	，	ECM	CAN	
26	Tire Pressure Alarm Indicator	Yellow	（8）	Hardwire	Low level	
27	Automatic Transmission Case Overheat Indicator	Red		AT	CAN	
28	Cruise Indicator	Green	（0）	ECM	CAN	
29	AWD Indicator	Yellow	AMO	Hardwire	Low level	
30	AFS OFF Indicator	Yellow	${ }_{\text {ORP }}^{\text {APF }}$	Hardwire	Low level	

TPMS (Tire Pressure Monitoring System)

Composition

Four Tire Pressure Sensors (not Provided for Spare Tire), One Tire Pressure Receiver, One Anti-dazzle Rearview Mirror

System Introduction

TPMS system can graphically display relevant data and warning symbols on anti-dazzle rearview mirror when the pressure of one or more tires is too high or too low. Meanwhile, it will send out sound alarms to remind driver of the vehicle, thus improving driving safety and vehicle reliability.

TPMS Schematic Diagram

0 0 in in	$\begin{aligned} & N \\ & \tilde{0} \\ & \ddot{0} \\ & 0 \end{aligned}$		\pm \vdots 0 0 0 0

Tire Pressure Monitoring Sensor

The component is mounted on rim.

Structure Diagram

Technical Parameters

1. When mounting, valve nut shall be locked by 3 to $5 \mathrm{~N} \cdot \mathrm{~m}$ torque ($4 \mathrm{~N} \cdot \mathrm{~m}$ recommended);
2. Burrs shall not occur at the edges of hub wheel both-side holes, which may damage valve gasket;
3. Mounting hole diameter applicable for valve is $11.5 \pm 0.2 \mathrm{~mm}$, the mounting surface in contact with the gasket shall be plane;
4. Weight: 40 g (including valve component);
5. Frequency: $433.92 \mathrm{MHz} \pm 100 \mathrm{KHz}$;
6. Power: -20dBm (EIRP);
7. Working Temperature: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$;
8. Measurement Range: 100 to 900KPA
9. Measurement Precision: Pressure: $0 \sim 70^{\circ} \mathrm{C} \pm 10 \mathrm{KPA}$

Other $\pm 25 \mathrm{KPA}$
Temperature: $\pm 3^{\circ} \mathrm{C}$

Tire Pressure Monitoring Receiver

The component is mounted under the driver's seat.

Appearance Diagram

Pin	Definition	I/O	Maximum Current	Remarks
1	Power Supply	POWER	150 mA	Power Supply
2	Ground	POWER	1 A	Power Supply
3	L-Line	IN/OUT	20 mA	LIN Line
4	IGN ON	IN	20 mA	Ignition Switch

Technical Parameters

1. Wire Connection: 282088-1 (TYCO);
2. Modulation Mode: FSK;
3. Frequency: $433.92 \mathrm{MHz} \pm 100 \mathrm{KHz}$;
4. Receiver Sensitivity: <-105dBm (Coaxial Cable Input)
5. Working Temperature: $-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
6. Working Voltage: DC $8 \mathrm{~V} \sim 16 \mathrm{~V}$
7. Terminal Insertion/Extraction Force:

Extraction Force $100 \mathrm{~mm} / \mathrm{min}>85 \mathrm{~N}$
Insertion Force $20 \mathrm{~mm} / \mathrm{min}<75 \mathrm{~N}$

Tire Pressure Setter

Summary

THA13 setter is a TPMS system matching tool designed and developed for 4 S shops, through which tire pressure sensor initiation, sensor replacement, tire rotation can be carried out, realizing the convenient maintenance operation of TPMS system in 4S shops.
Appearance Diagram

Technical Parameters

Working Voltage	DC 9V Square Battery
Working Current	$<3 \mathrm{~mA}$
LF Trigger Distance	$0.5 \mathrm{~m}<\mathrm{L}<1 \mathrm{~m}$
RF Transmission Distance	$1.5 \mathrm{~m}<\mathrm{L}<3 \mathrm{~m}$
LF Frequency	$125 \mathrm{kHz} \pm 2 \mathrm{kHz}$
RF Frequency	$433.92 \mathrm{MHz} \pm 100 \mathrm{kHz}$

Notes

During operation, if indicator brightness darken after power switch is turned on, or all indicators flash when triggered, capacity of the setter battery is low. Please replace the battery.
In case of low battery capacity, the trigger distance will become short. Please approach the tire valve to the greatest extent. During setting, open the vehicle door, and press the button for confirmation in the cockpit to conduct the setting operation.

Operation Description

1. Sensor Initialization

For users who equip their vehicles with TPMS afterward, this function can be used.
(a) Turn on the setter power switch, initiation indicator will be illuminated (automatically illuminated when powered by default).
(b) Let the setter close to the left front wheel, and when the distance to the left front wheel valve is 50 cm , press the button representing the left front wheel to allow the left front wheel indicator to flash. When transmission information of the sensor has been received, the indicator will be constantly on.
(c) Trigger the right front, right rear and left rear wheels successively. After triggered, indicators of corresponding positions will be constantly on.
(d) After indicators at the four tire positions are all on, take the setter into the cockpit. After confirming that vehicle key is at the "ON" position, press the "OK" button of the setter, then the indicators at the four tire positions will be displayed by turns.
(e) After setting information has been received by the receiver mounted under seat, "SET" will be displayed on rearview mirror.
(f) In addition, the indicators for four tire positions will be illuminated simultaneously. Operator shall press the button on the rearview mirror for confirmation within 30s. After confirmation, sensor initiation is finished.
Note: If operator has not pressed the button on the rearview mirror for confirmation within 30 s, the operation is invalid and the initiation cannot be finished. It is required to re-operate by the above operations once again.

2. Sensor Replacement

For replacement of the vehicle sensor, this function can be used.
(a) Turn on the setter power switch and press the sensor replacement button, then sensor replacement indicator will be illuminated.
(b) Let the setter close to tire valve with its sensor replaced, between which the distance is less than 50 cm , and press the button at the position of the tire with its sensor replaced, then the indicator of this position will flash. When sensor transmission information has been received, the indicator will be constantly on; If more sensors have been replaced at the same time, please trigger them in proper order, to make the indicators of the positions with their sensors replaced constantly on.
(c) Take the right front wheel sensor replacement as an example
(d) Take the setter into the cockpit, and confirm vehicle key is at the "ON" gear position. Then, press the "OK" button of the setter, then the indicators at the four tire positions will be displayed by turns.

(e) After setting information has been received by the receiver mounted under seat, "SET" will be displayed on rearview mirror, and the indicator of the position with its sensor replaced will be constantly on.
(f) Operator shall press the button on the rearview mirror for confirmation within 30s. After confirmation, sensor replacement is finished.
Note: If operator has not pressed the button on the rearview mirror for confirmation within 30 s, the operation is invalid and the sensor replacement cannot be finished. It is required to re-operate by the above operations once again.
Please carry out the above operations after sensor has been completely mounted. During sensor mounting, it is not required to record the ID code and mounting position information of the sensor. 4 S shop maintenance records are excluded.
3. Tire Rotation

When any tire has been used for a long time, it is required to conduct tire rotation. The function is able to be used.
(a) Turn on the setter power and press the tire rotation button, then the rotation indicator will be illuminated.
(b) Select the tires with their positions rotated, and press their corresponding position buttons on the setter successively, then tire position indicators will be illuminated. Take the left front and right rear wheels as examples, as shown in the left figure.
(c) Take the setter into the cockpit, and confirm vehicle key is at the "ON" gear position. Then, press the "OK" button of the setter, then the indicators at the four tire positions will be displayed by turns.

(d) After setting information has been received by the receiver mounted under seat, "SET" will be displayed on rearview mirror, and the indicators of the positions where tires have been rotated will be constantly on.
(e) Operator shall press the button on the rearview mirror for confirmation within 30s. After confirmation, tire rotation is finished.
Note: If operator has not pressed the button on the rearview mirror for confirmation within 30s, the operation is invalid and the tire rotation cannot be finished. It is required to re-operate by the above operations once again. Please rotate the corresponding tires firstly before the above operations are carried out. Sensors are not required to be removed during tire rotation. If rotation is carried out for more than two tires, please follow the above operations repeatedly, during which only two tires can be rotated each time.

Anti-dazzle Rearview Mirror

Product Specification

1	Reflective Back Film	Silvering	8	Storage Temperature	$-40 \sim+85^{\circ} \mathrm{C}$
2	Reflector	Plane	9	Working Temperature	$-40 \sim+85^{\circ} \mathrm{C}$
3	Reflectivity	When not working: $\geq 55 \%$	10	Adjustable Angle	Up and Down/Left and Right: $\geq 90^{\circ} \mathrm{C}$
		When working: $\geq 4 \%$			
4	Deflection	$\leq 2 \%$	11	Button Operating Force	2-8 N
5	Voltage Range	$9-16 \mathrm{~V}$	12	Color	Black
6	Current Consumption	$\leq 0.5 \mathrm{~A}$ (Maximum)	13	Texture Specification	\#540 Leather Texture
7	Adjusting Torque	$20 \pm 5^{\circ} \mathrm{C}$ Mirror Seat End Shaft Torque: $22-37 \mathrm{kgf.cm}$ Mirror Head End Shaft Torque: 16-32kgf.cm Mirror Seat End Shaft Torque - Mirror Head End Shaft Torque: $\geq 1.15 \mathrm{kgf} . \mathrm{cm}$	14	Transmittance	$4 \pm 2 \%$

Appearance Diagram

Terminal Definition

I/O Interface Specification

Pin Position	Pin Position Name	I/O	Minimum	Rated	Maximum	Technical Indices	Definition
1	IGN	Power Supply	+9 V	+12 V	+16 V	$0.5 \mathrm{~A}($ Maximum $)$	Input from IGN
2	GND	Ground	-	-	-	-	Grounding
3	LIN	I	-	TTL	-	$0.25 \mathrm{~mA}($ Minimum $)$	LIN Communication

Anti-dazzle Function Description

1. Non-anti-dazzle State

At daytime, the environmental luminous intensity of the electronic anti-dazzle mirror is generally higher than 100Lux. At this time, regardless of dazzle luminous intensity, the anti-dazzle mirror will automatically enter the daytime mode and remain its non-anti-dazzle state; the anti-dazzle mirror, whose reflectivity under non-anti-dazzle state can reach 55% or above, is considered as a regular rearview mirror this moment;
2. Anti-dazzle State

At night, or when passing through any tunnel or cave, the environmental luminous intensity of the electronic antidazzle mirror is generally lower than 100Lux, which will automatically enter night mode and remain its anti-dazzle state; at this time, if the dazzle luminous intensity of rear vehicles is higher than the environmental luminous intensity, the anti-dazzle mirror will immediately start the anti-dazzle function, darkening the mirror; the higher the dazzle luminous intensity is, the darker the mirror will be; the reflectivity when the mirror is the darkest is higher than 4%; the anti-dazzle function can allow drivers to look at the rearview mirror directly without any eye discomfort or dizziness, and to see rear objects clearly, thus improving driving safety; the anti-dazzle function plays a good protective role for eyes, which can avoid eye fatigue, thus guaranteeing driving safety at night; after dazzle disappears, the anti-dazzle mirror will quit the anti-dazzle state within a short period, which will be used as a regular rearview mirror afterward;

Display Function Description

Remark: the display function with display anti-dazzle mirror can be functioned only when used together with vehicle tire pressure inspection system.

1. Power Display

When no data sent from the tire pressure machine has been received, the rearview will display the tire pressure and temperature values by turn; $\hookleftarrow \longleftrightarrow \longleftrightarrow{ }^{\circ} \mathrm{C}$ tire pressure machine has been received, the display of tire pressure and temperature values will be shifted (the shift period is 1.5 s); when abnormal information of tire pressure sent from the tire pressure machine has been received, display it on the basis of the following description of abnormal tire display.
2. Normal Display of Tire Pressure

The four tire pressures are displayed by turn with their corresponding tire pressure state indicators flashing. After 30s, display of the tire pressure and temperature values will stop.
3. Abnormal Tire Display

When any tire is abnormal, the rearview mirror will always display the abnormal information, that is, pressure alarm symbol, temperature alarm symbol, rapid leakage alarm symbol or signal loss alarm symbol will be illuminated with the corresponding data displayed (for example, in case of pressure exception, pressure alarm symbol and pressure value will always be constantly shown); In case of pressure exception, signal loss exception and temperature exception, the buzzer will tweet for five times (0.5 s tweet and then 0.5 s blank) with its corresponding tire pressure state indicator turning red and flashing; In case of rapid leakage exception, the buzzer will tweet for 15 s with its corresponding tire pressure state indicator turning red and flashing; in normal state, the rearview mirror display interface is off. If alarm information sent from tire pressure machine has been received this moment, the display interface will be automatically turned on and display information continuously before restoration. After restoration, the alarm will disappear, and the display interface will be turned off after 30s.
4. Learning Mode Display Description

When learning information sent from the tire pressure machine has been received, the rearview mirror will enter the learning interface automatically: the four tire state indicators will turn green while flashing, and the "SET" characters will be shown at the bottom right of the vehicle symbol; if the rearview mirror button has been pressed for about 0.5 s at this time, the rearview mirror will feedback "the response information is received" to the tire pressure machine, which represents a successful learning process; if the button has not been pressed within 30s, "the response information is not received" will be feedbacked to the tire pressure machine, which represents a failed learning process.
5. Learning Display Description of Tire Pressure Sensor Replacement

When the information of tire pressure sensor replacement demand sent from the tire pressure machine has been received by the rearview mirror, the state indicator corresponding to the tire whose sensor is required to be replaced, will turn green while flashing, and the "SET" characters will be shown at the bottom right of the vehicle symbol; if the rearview mirror button has been pressed for about 0.5 s at this time, the rearview mirror will feedback "the response information is received" to the tire pressure machine; if the button has not been pressed within 30 s, "the response information is not received" will be feedbacked to the tire pressure machine.

6. Learning Display Description of Tire Rotation

When the information of tire rotation demand (for one or more tires) sent from the tire pressure machine has been received by the rearview mirror, the state indicator corresponding to the tire required to be rotated, will turn green while flashing, and the "SET" characters will be shown at the bottom right of the vehicle symbol; if the rearview mirror button has been pressed for about 0.5 s at this time, the rearview mirror will feedback "the response information is received" to the tire pressure machine, which represents a successful tire rotation; if the button has not been pressed within 30s, "the response information is not received" will be feedbacked to the tire pressure machine, which represents a failed tire rotation.

Button Function Description

1. Normal Display of Tire Pressure.

After IGN=ON for 30 s, the rearview mirror will stop displaying tire pressure and temperature values; press the button for about 0.5 s , to re-display tire pressure and temperature values, and press the button again for about 0.5 s , to stop displaying these values. By doing so, you can view the current tire condition at any time.
2. Display Unit Setting of Tire Pressure and Temperature Values

When IGN=ON, display units of tire pressure and temperature values are defaulted as the previous display units; press the button for about 3 s to enter the tire pressure and temperature unit setting; firstly, enter the tire pressure unit setting, to allow the tire pressure unit flashing. At this time, the unit will shift among kPa , bar and psi in cycle after each press. If the button is not pressed within 3 s , the system will consider the tire pressure unit setting has been finished by default, and display the last selected unit. Meanwhile, it will stop flashing the tire pressure unit, and enter the temperature unit setting to allow the temperature unit flashing. At this time, the unit will shift between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ in cycle after each press. If the button is not pressed within 3 s , the system will consider the temperature unit setting has been finished by default, and display the last selected unit. Meanwhile, it will stop flashing the temperature unit, and quit the unit setting state while entering the normal display state finally.
3. For the rearview mirror to conduct relevant setting under learning display mode.

Diagnosis Function Description

1. Fault Diagnosis of IGN Power Wire
(a) When voltage is higher than 16V, LED will display the error code of "E-1", and the tire display color is red.
(b) When voltage is lower than 9V, LED will display the error code of "E-2", and the tire display color is red.
2. Fault Diagnosis of LIN Line
(a) When power supply is short-cricuit, LED will display the error code of "E-3", and the tire display color is red.
(b) For short circuit for groud, LED will display the error code of "E-4", and the tire display color is red.
3. Fault Diagnosis of LIN Information not Received
(a) When system is powered for the first time, if LIN information has not been received after $800 \pm 200 \mathrm{~ms}$, LED will display the error code of E-5.
(b) When system is operating in the driving state, if LIN information has not been received after 16 s , LED will display the error code of E-6.
(c) When the above items "a" and " b " are displayed, the four tires will turn red while flashing for $5 \mathrm{~s}(0.5 \mathrm{~s}$ on and then 0.5 s off), the buzzer will tweet for 5 times (0.5 s tweet and then 0.5 s blank), tire pressure warning symbol " (!)" will be shown, and LED will display the corresponding error code. when the fault has disappeared, system will return to the normal display state directly.

Body Electric Apparatus
 (K5-4D20B Bosch System)

Engine Electronic Control System .2

Body Electric Apparatus (K5-N2)

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 2
Engine Electronic Control System 4
Automatic Transmission 6
ABS System 7
ESP System 8
TOD 9
Airbag Electronic Control System 10
Instrument Cluster 11
Relationship between Wiring Harnesses and Connector Connection Number Chart 12
BCM. 13
Cruise Control System 14
CD1085 17
DVD109 and DVD110 20
DVD111 23

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness

Connecting Engine
Wiring Harness 1

Connecting Power Supply Wiring Harness 2

$\begin{aligned} & \mathrm{A} 39 \mathrm{~A} \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \mathrm{A} 42 \mathrm{~A} \\ & \mathrm{Br} / \mathrm{G} \end{aligned}$			$\begin{aligned} & \hline 73 \\ & 0.5 \\ & \mathrm{~L} / \mathrm{R} \end{aligned}$	122 0.5 G / R
74 0.5 L/W	$\begin{aligned} & 81 \\ & 0.35 \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & 80 \\ & 0.5 \\ & \text { w} \end{aligned}$		$\begin{aligned} & 90 \\ & 0.5 \\ & L / Y \end{aligned}$	31 1.25 $0 / \mathrm{L}$
$\begin{aligned} & 83 \\ & 0.5 \\ & \mathrm{~W} / \mathrm{L} \end{aligned}$	$\begin{aligned} & \hline 82 \\ & 0.5 \\ & W / B \end{aligned}$			183 1.25 L/W	182 1.25 Y
50P 2.0 B	85 0.5 P/Y	76 0.5 G/B	191 0.85 G / R	$\begin{aligned} & 380 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & \hline 184 \mathrm{~A} \\ & 1.25 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$

Connecting Instrument Panel and Console Wiring Harness 2

Connecting Engine Compartment Wiring Harness 1

$\begin{aligned} & 122 \\ & 0.5 \\ & \mathrm{G} / \mathrm{R} \end{aligned}$				$\begin{aligned} & \text { B42D } \\ & 0.5 \\ & \mathrm{Br} / \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{B390} \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$
$\begin{aligned} & 31 \\ & 1.25 \\ & 0 \mathrm{r} / \mathrm{L} \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 0.35 \\ & L / Y \end{aligned}$	$\begin{aligned} & \text { } 315 \\ & 2.0 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 80 \\ & 0.35 \\ & \text { if } \end{aligned}$	$\begin{aligned} & 81 \\ & 0.35 \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & 74 \\ & 0.5 \\ & \mathrm{~L} / \mathbb{W} \end{aligned}$
$\begin{aligned} & 182 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 183 \\ & 1.25 \\ & \mathrm{~L} / \mathbb{W} \end{aligned}$	\square	\square	$\begin{aligned} & 82 \\ & 0.35 \\ & W / B \end{aligned}$	$\begin{aligned} & 83 \\ & 0.35 \\ & \text { W/J } \end{aligned}$
$\begin{aligned} & \text { 184B } \\ & 1.25 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 380 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 191 \\ & 0.5 \\ & G / R \end{aligned}$	$\begin{aligned} & 76 \\ & 0.35 \\ & G / B \end{aligned}$	85 0.35 P/Y	$\begin{aligned} & 50 \mathrm{G} \\ & 2.0 \\ & \mathrm{~B} \end{aligned}$

Connecting Engine Compartment Wiring Harness 2

Connecting Instrument Panel and Console Wiring Harness 1

$\begin{aligned} & 71 \mathrm{~B} \\ & 0.5 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \hline 47 \\ & 0.5 \\ & \mathrm{Y} / \mathrm{B} \end{aligned}$			$\begin{aligned} & 402 \\ & 0.5 \\ & \mathbb{W} / B \end{aligned}$	$\begin{aligned} & \hline 46 \\ & 0.5 \\ & \mathrm{~W} / \mathrm{R} \end{aligned}$
$\begin{aligned} & 401 \\ & 0.5 \\ & \mathrm{~L} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 41 \\ & 0.85 \\ & \mathrm{~L} / \mathrm{R} \\ & \hline \end{aligned}$	E44 0.85 R / Y	34 0.85 π	$\begin{aligned} & 281 \\ & 0.35 \\ & 6 / Y \end{aligned}$
	116 0.5 R/VII	$\begin{aligned} & 1262 \\ & 0.5 \\ & Y / G \end{aligned}$	$\begin{aligned} & \hline \text { D44 } \\ & 0.85 \\ & \text { R/L } \\ & \hline \end{aligned}$	$\begin{aligned} & 1261 \\ & 0.5 \\ & \mathrm{~V} / \mathrm{F} \end{aligned}$	$\begin{aligned} & 282 \\ & 0.35 \\ & \mathrm{G} / \mathrm{L} \\ & \hline \end{aligned}$
311 0.35 R / Y	95 0.5 L/0		403B 1.25 R	79 0.5 L	$\begin{aligned} & \hline 452 \\ & 0.5 \\ & \text { R/B } \\ & \hline \end{aligned}$

Connecting Instrument Panel and Console Wiring Harness 4

\begin{tabular}{|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& 46 \\
& 0.5 \\
& 0 / \mathrm{R}
\end{aligned}
$$ \& $$
\begin{aligned}
& 402 \\
& 0.35 \\
& 0 / B
\end{aligned}
$$ \& \& \& $$
\begin{aligned}
& 47 \\
& 0.5 \\
& Y / B
\end{aligned}
$$ \& $$
\begin{aligned}
& \begin{array}{l}
11 \\
0.35 \\
R / B
\end{array}
\end{aligned}
$$

\hline $$
\begin{aligned}
& 281 \\
& 0.35 \\
& G / Y
\end{aligned}
$$ \& $$
\begin{aligned}
& 34 \\
& 0.85 \\
& \mathrm{R} / \mathrm{L}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{E} 44 \\
& 0.35 \\
& \mathrm{R} / \sqrt{2}
\end{aligned}
$$ \& 41
0.5
L/R \& \& 401
0.5
L

\hline $$
\begin{aligned}
& 282 \\
& 0.35 \\
& G / L
\end{aligned}
$$ \& $$
\begin{aligned}
& 1261 \\
& 0.5 \\
& 0.5
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { D44 } \\
& 0.35 \\
& R / L
\end{aligned}
$$ \& 1262
0.5
$\mathrm{~V} / 6$ \& $$
\begin{aligned}
& 116 \\
& 0.5 \\
& R / \mathbb{F}
\end{aligned}
$$ \&

\hline 452
0.5
R/B \& 790

L
L \& 403A
1.25
R \& \& 95

0.35

L./or \& $$
\begin{aligned}
& 311 \\
& 0.35 \\
& \mathrm{R} / \mathrm{Y}
\end{aligned}
$$

\hline
\end{tabular}

Connecting Engine Compartment Wiring Harness 4

$\begin{aligned} & 29 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 315 \\ & 2.0 \\ & \mathrm{Br} \end{aligned}$			$\begin{aligned} & \hline 511 \\ & 0.5 \\ & \mathrm{~L} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \hline 135 \\ & 1.25 \\ & \mathrm{~L} / \mathbb{I N} \end{aligned}$
	$\begin{aligned} & \text { D44 } \\ & 0.5 \\ & \text { R/L } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \mathrm{R} / \mathrm{Y} \end{aligned}$		$\begin{aligned} & 777 \\ & 0.5 \\ & Y \end{aligned}$	$\begin{aligned} & 895 \\ & 0.5 \\ & G / R \end{aligned}$
$\begin{aligned} & \hline 614 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{Br} \end{aligned}$	$\begin{gathered} 613 \\ 0.5 \\ \mathrm{Br} / \mathrm{B} \\ \hline \end{gathered}$			$\begin{aligned} & 390 \\ & 0.5 \\ & G / Y \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 0.85 \\ & \mathrm{R} / \mathrm{L} \\ & \hline \end{aligned}$
$\begin{aligned} & 390 \\ & 0.5 \\ & \mathrm{G} / \mathrm{Y} \end{aligned}$	50 A 2.0	609 0.5 $6 / B$	610 0.5 G / R	$6 / 11$ 0.5 G/L	$\begin{gathered} 612 \\ 0.5 \\ G / V \end{gathered}$

Connecting Cockpit Wiring Harness

135 0.85 L / W	511 0.5 L/B			$\begin{aligned} & 315 \mathrm{~A} \\ & 2.0 \\ & \mathrm{Br} \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 1.25 \\ & L Y \\ & \hline \end{aligned}$
895	777		E44	D44	35
0.5	0.5		0.5	0.5	1.25
G/R	Y		RY	R/L	Y
18	390			613	614
0.85	0.5	\square		0.5	0.5
R/L	G/Y			Br/B	$\mathrm{Gr} / \mathrm{Br}$
612	611	610	609	50Y	390
0.5	0.5	0.5	0.5	2.0	0.5
GN	G/L	G/R	G/B	B	G/Y

Connecting Engine Compartment Wiring Harness

Connecting MT/AT Wir

Connecting Cockpit Wiring Harness

Connecting License Plate Wiring Harnes DJ7031A-2.8-21

Connecting Back Door Wiring Harness

Engine Electronic Control System

Automatic Transmission

537	538	539	540	541
R	R / W	Br	W	L
0.5	0.5	0.85	0.85	0.85
542	543	544	545	546
$0 r$	Lg	Y	Y / L	RB
0.85	0.85	0.85	0.85	0.85

Electromagnetic Clutch H: MG643386

523	524	525	526
Br / B	R / W	Br / Y	Br / G
0.5	0.5	0.5	0.5
527	529	528	
R / Gr	Y / B	G / Y	
0.5	0.5	0.5	

Automatic Shift Switch H: MG643406-5

$\begin{aligned} & 530 \\ & \text { YR } \end{aligned}$				$\begin{aligned} & 532 \\ & 0.5 \end{aligned}$
533 0.5	534 0.5	536 0.5	535 0.5	$\begin{gathered} 531 \\ Y \\ 0.5 \end{gathered}$

ture Alarm
H: MG613408-4

ESP System

Airbag Electronic Control System

Instrument Cluster

Speed Sensor

BCM

Cruise Control System

1. Introduction of Cruise Function

Cruise control can help you to maintain the preset speed (no lower than $60 \mathrm{~km} / \mathrm{h}$) without the requirement of stepping accelerator pedal. When driving on a straight and smooth highway, this function can be enabled. The function is not recommended to be enabled in urban, winding or slippery roads, and rainy or other bad climatic conditions.
2. Introduction of Cruise Switch

As shown in the figure: "RES/+" refers to the combination button of cruise recovery and acceleration; "SET/-" refers oo the combination button of cruise setting and deceleration; "CRUISE" refers to main cruise switch button; "CANCEL" refers to cruise cancellation button.

Cruise Setting

a) Accelerate your vehicle to the speed you want to set (the speed must exceed $60 \mathrm{~km} / \mathrm{h}$), and press the main switch of cruise control - "CRUISE" button. Then, the cruise indicator in instrument will be illuminated. During cruise, the indicator will always keep on
(b) Then, press the "SET/-" button on steering wheel while releasing accelerator pedal. The vehicle will run at the speed you set, meanwhile, the set speed will be displayed on the instrument LCD in digital form
4. Increase of Cruise Speed

During cruise, the cruise speed can be increased by any of the following methods:
(a) Press the "RES/+" button for a long time (longer than 0.4 s), the cruise speed of vehicle will be increased continuously. When the cruise speed is up to the speed you want, release the "RES/+" button. Then you can cruise at the current speed.
(b) Once press the "RES/ + " switch and release immediately (pressing time less than 0.4 s), the cruise speed will be increased by $3 \mathrm{~km} / \mathrm{h}$.

When vehicle is under cruise mode, if you want to increase vehicle speed temporarily, step down the accelerator pedal to a certain value for speeding up. Speeding up neither affects the operation of cruise system nor changes the set cruise speed. After releasing the accelerator pedal, the speed will return to the set cruise speed.
5. Decrease of Cruise Speed

Use any of the following operation methods:
(a) Press "SET/-" button for a long time (longer than 0.4 s and shorter than 100 s), the cruise speed of vehicle will be decreased continuously. When vehicle speed is down to the speed you want, release the "SET/-" button. Then you can cruise at the current speed.
(b) Once press the "SET/-" button and release immediately (pressing time shall be less than 0.4 s , and 100 s). the ruise speed will be decreased by $3 \mathrm{~km} / \mathrm{h}$.
6. Cruise Cancellation

Any of the following methods can be adopted:
(a) Step down the brake pedal.
(b) Press the "CANCEL" button on steering wheel.
(c) The vehicle speed is lower than $60 \mathrm{~km} / \mathrm{h}$ or higher than $170 \mathrm{~km} / \mathrm{h}$
(d) Cruise Cancellation Caused by Fault
(e) Others

If you want to continue to use cruise control, after the relevant conditions are satisfied (1. vehicle speed is higher than $60 \mathrm{~km} / \mathrm{h}$; 2. cruise switch is kept on), press the "RES/+" button on steering wheel, then you will return to the speed when cruise is cancelled for the last time.
7. Cruise Close

For cruise close, use any of the following operation methods:
(a) Press the "CRUISE" button again, and then the cruise indicator on instrument panel will go out.
(b) Turn off the ignition switch.

By either of the above two methods, cruise system can be closed. After close, if you want to restore to cruise mode, you must follow the "Cruise Setting Description" procedure for resetting.
8. Cruise Control Switch Assembly
(a) Circuit Schematic Diagram

Name	Resistance Value	Requirement
R7	910Ω	$\pm 1 \%$
R6	220Ω	$\pm 1 \%$
R8	3900Ω	$\pm 1 \%$
R9	0Ω	$\pm 1 \%$
RA4\RA5	4.7 K	$\pm 5 \%$

(b) Fault Symptom Treatment Index

Fault Symptom	Diagnosis Procedure
No Resistance or incorrect resistance output is gotten when pressing a button	1. Inspect if the patch is wrong 2. Inspect if the patch resistor is faulty soldered 3. Inspect if the sleeve wiring harness is soldered at a wrong position 4. Inspect if conductivity of the conductive rubber is good 5. Inspect if the button bead is forgotten to be mounted
Backlighting can not be illuminated or with inconsistent light	1. Inspect if the light emitting diode is faulty soldered 2. Inspect if the patch resistor is wrongly soldered

(c) Cruise Switch Test

- Press the RES+ Button to inspect if the resistance value between ECU and the " 3 " pin is $910 \Omega \pm 1 \%$ Inspect the R7 patch resistor and 910Ω precise resistor
- Press the SET Button to inspect if the resistance value between ECU and the " 3 " pin is $220 \Omega \pm 1 \%$ Inspect the R6 patch resistor and 220Ω precise resistor
- Press the CRUISE Button to inspect if the resistance value between ECU and the " 5 V " pin is $3900 \Omega \pm 1 \%$ Inspect the R8 patch resistor and 3900Ω precise resistor
- Press the CANCEL Button to inspect if the resistance value between ECU and the " 3 " pin is $0 \Omega \pm 1 \%$ Inspect the R9 patch resistor and 0Ω precise resistor
- Inspection of Button Backlighting (Comparing with Sample)

The backlighting is a 4.7 K general patch resistor
Inspect if luminous intensity and wave length of the light emitting diode are within the same bin

CD1085

Panel Function and Electrical Connection Diagram

15/17. Fast Reverse/Fast Forward Button:
Radio Mode:
Press such keys shortly to execute the functions of Radio Upward/Downward Search
Press such keys for a long time to execute the functions of Manual Radio Search CD/MP3/USB Mode:

Press such keys shortly to execute the functions of Track Upward/Downward Selection
Press such keys for a long time to execute the functions of Fast Forward/Fast Reverse
16. POWER Button Power Switch and Volume Adjusting
18. EQ Button: Sound Effect Mode Selection
19. SET Button: Sound Source Selection

Description of Buttons

1. MUTE Button
2. FM Button: FM Band Selection
3. AM Button: AM Band Selection
4. Disc Eject Button
5. CD Button: CD Mode Selection
6. MEDIA Button:

- USB Mode
- AUX Mode

7-12 Preset Radio Buttons
Radio Mode:
18 FM radios and 12 AM radios
CD Mode:
Shortly pressing the " 1 " button can realize the function of Repeat Play.
Shortly pressing the " 2 " button can realize the function of Random Play.
MP3/USB Mode:
Shortly pressing the " 1 " button can realize the function of Repeat Play.
Shortly pressing the " 2 " button can realize the function of Random Play.
Shortly pressing the " 5 " button can realize the function of Upward Selection of Folder.
Shortly pressing the " 6 " button can realize the function of Downward Selection of Folder.
13. AST Button: pressing the button for a long time can help to store radios automatically
14. SCN Button:

Radio Mode: Execute the function of Radio Browse
CD/MP3/USB Mode: Execute the function of Track Browse

Definition of Pins

Hole Position	Signal	Description	Hole Position	English Label	Chinese Label	Hole Position	English Label	Chinese Label
C1-1								
C1-2								
C1-3								
C1-4								
C1-5								
C1-6								
C2-1								
C2-2								
C2-3								
C2-4								
C2-5								
C2-6								
C3-1	USB_D+	USB DATA+	B1	RL-		A1	KEY+	Keying Input
C3-2	USB_D-	USB DATA-	B2	RL+	Output	A2	KEY_GND	Keying Grounding
C3-3	USB_BATT	USB + 5VDC	B3	FL-		A3		
C3-4	USB_GND	USB Ground	B4	FL+	Output	A4	ACC	Ignition Detection
C3-5	Shield_GND	USB Shield Ground	B5	FR-	Right Front Audio	A5	P.ANT	Antenna Power
C3-6	AUX_L	AUX Left Channel	B6	FR+	Output	A6	ILLUNMI	Headlamp Detection
C3-7	AUX_R	AUX Right Channel	B7	RR-	Right Rear Audio	A7	BATT+	Power+
C3-8	AUX_G	AUX Ground	B8	RR+	Output	A8	GND	Ground Wire

Safety Notice

1. Precaution
(a) It can only be used in 12V DC powered system with its negative pole grounded.
(b) When mounting and connecting, it is required to cut off the negative pole of vehicle battery.
(c) When replacing fuse, it is required to ensure that the fuses used are of the same specification. If fuses of a different specification have been used, serious damage may be caused to the player.
(d) Do not try to disassemble the player, as the laser beam in the laser head is harmful to eyes.
(e) Ensure sharp pins and external objects will not be introduced into the player. Otherwise, faults may be caused, or equipment may be endangered, such as electric shock or laser beam exposure.
(f) If your vehicle has been placed under too-hot or too-cold environment for a long time, it is possible that no operation can be conducted until the internal temperature is restored to normal.
(g) Adjust the volume to the position where external alarms, such as horn sound, can be heard.
2. CD Notes
(a) Playing defective or dusty CD discs may cause incoherent sound.
(b) Do not touch the disc side with no label.
(c) Do not place any sealing strap, label or data protection tab on either side of the disc.
(d) Do not expose CD discs to sunlight or too-hot environment directly.
(e) Use a piece of clean soft cloth to wipe dirty discs from the inside radically out to the edge.
(f) Do not use such solvent as alcohol or gasoline for wiping.
(g) The player cannot play CD discs of 3in. (8cm).
(h) Do not insert CDs of 3in. size or irregular shapes. By doing so, discs may be unable to be ejected, thus causing faults.
3. Before Operation
(a) Do not set a too-high volume of sound, as too-loud sound may prevent external sound, thus causing traffic accidents.
(b) Before any complex operation, it is required to park the vehicle first.

Specification

Power	12V Current (11V-16V), Negative Pole Grounding
Maximum Output Power	$45 \mathrm{~W} \times 4$ Channels
Continuous Output Power	$25 \mathrm{~W} \times 4$ Channel CD Play Mode ($4 \Omega 10 \%$ T.H.D.)
Applicable Speaker Impedance	4-8ohm
Fuse Specification	10A
Dimension (Width \times Height \times Depth)	$220 \times 195 \times 160 \mathrm{~mm}$
Weight	2.38 kg
Display	Frequency, Band, Fixed Radio Button, CD/MP3 Function
FM Stereo Radio	Frequency Range: $87.5-108.0 \mathrm{MHZ}$
	Sensitivity: $7 \mathrm{~dB} \mu$
	Frequency Response: $30 \mathrm{~Hz}-15 \mathrm{kHz}$
	Stereo Crosstalk: $30 \mathrm{~dB}(1 \mathrm{kHz}$)
	Image Frequency Inhibition Ratio: 50 dB
	IF Response Rate: 50 dB
	Signal to Noise Ratio $>55 \mathrm{~dB}$
AM Radio	Frequency Range: $531-1629 \mathrm{KHz}$
	South American Frequency Range: $530-1,720 \mathrm{KHz}$
	Sensitivity (S/N=20dB): $26 \mathrm{~dB} \mu$

Fault and Troubleshooting

Problem Behavior	Reason	Measure
General Problems		
No Power or Sound	The ignition switch of the vehicle is off	Please turn on the ignition switch of the vehicle
	Fuse Blown	Replace by fuses of the specified specification
	Volume or Mute Off	Check if Volume or Mute is turned on
Disc Problems		
Disc has been loaded but no sound can be received	The disc is placed with its back side down	Place the disc correctly with its front side down and its label up
	Disc is dirty or seriously scratched	Clean the disc or replace by a new disc
Sound-skipping phenomenon occurs to disc, causing poor sound quality.	Disc is dirty or seriously scratched	Clean the disc or replace by a new disc
Radio Problems		
Loud Radio Noise	Radio station is too far or signal is too weak	Select other radios with higher signal level
Pre-selected radios is missed	Connection of battery cables are incorrect	Connect the battery cables to terminals often charged
Display of Error Information		
CD ERR	Disc is placed with its back side down	Place disc correctly with its front side down and its label up
	Format is not supported or file error occurs	Inspect the disc
	CD Player Error	Press "Disc Eject Button" to eject the disc. If it is unable to eject the disc, press the "REST" button, and then "Disc Eject Button" for ejecting

DVD109 and DVD110

Introduction of Panel Button Function and Interface Definition

Button Function

Button Name	Functionality	Description
MEDIA	Media/Aux Play	Shift among Disc/USB/AUX modes
RADIO	Radio	Selection of Radio Mode
PHONE	Bluetooth phone	Enter main menu of bluetooth
DISP	Display setting	Enter main menu of display setting
MUTE	Mute/Unmute	Mute Mode On/Off
AUDIO	Audio Setting	Enter main menu of audio setting
SET	System setting	Enter menu of system setting
	Play/Pause	Pause/Play Button
	Seek up / Fast Forward / Track up	For radio mode, shortly press the button to search radios downward automatically; for media play mode, shortly press the button to select the next track, and press it for long for fase forward.
	Seek up / Fast Forward / Track up	For radio mode, shortly press the button to search radios upward automatically; for media play mode, shortly press the button to select the previous track, and press it for long for fast reverse.
	EVol] knob/[Power] button	Power on/off
	Volume up/down	Eject the disc
Tune	Manual tune up/down	Press for a long time to turn off the radio

Interface Definition

Hole Position	English Label	Chinese Label	Hole Position	English Label	Chinese Label	Hole Position	English Label	Chinese Label
C1-1	video -	Rearview Mirror Input -						
C1-2	video +	Rearview Mirror Output +						
C1-3								
C1-4								
C1-5								
C1-6								
C2-1	REVERSE	Reverse Detection						
C2-2	BRAKE	Speed Detection						
C2-3								
C2-4								
C2-5								
C2-6								
C3-1	USB_D+		B1	RL-	Left Rear Audio	A1	KEY+	Keying Input
C3-2	USB_D-		B2	RL+	Output	A2	KEY_GND	Keying Grounding
C3-3	USB_BATT		B3	FL-	Left Front Audio	A3		
C3-4	USB_GND		B4	FL+	Output	A4	ACC	Ignition Detection
C3-5	Shield_GND		B5	FR-	Right Front Audio	A5	P.ANT	Antenna Power
C3-6	AUX_L		B6	FR+	Output	A6	ILLUNMI	Headlamp Detection
C3-7	AUX_R		B7	RR-	Right Rear Audio	A7	BATT+	Power +
C3-8	AUX_G		B8	RR+	Output	A8	GND	Ground Wire

Notes

1. Warning
(a) During driving, do not operate the CD player to avoid dangers due to lack of concentration.
(b) If a long time is required for operating the player, please park the vehicle, as negligence of the above key point may cause traffic accident.
(c) Keep volume to the level at which external noise can be heard, otherwise, traffic accident may occur.
(d) Do not disassemble or remodel, as disassembly and remodeling may cause accidental fire or get an electric shock.
(e) Only the vehicle having 12 V voltage battery with negative terminal grounded can be used (if you cannot assure, contact the distributor), otherwise, fire or other accidents may be caused.
(f) Do keep small parts away from children. Once any small part is swallowed by children, go to the hospital immediately.
(g) When replacing fuse, it is required to select fuse of the specifed ampere, otherwise, fire disaster or other accidents may be caused.
(h) Do not block vents or radiating panels, otherwise, fire may be caused due to internal heat concentration.
(i) This product can only be used for vehicles with 12 V battery. If this product is used in regions other than its design region, fire, electric shock or other dangers may be caused.
(j) Do not insert your hands, figures or other foreign objects into the disc inlet or any gap, otherwise, personal injury or equipment damage may be caused.
2. Notes
(a) This player is only applicable for standard 12 cm discs.
(b) Do not insert broken, deformed or damaged discs, as playing damaged discs may cause serious damage to the player.
(c) When the player is powered off, it is forbidden to insert disc forcibly.
(d) Only round discs, rather than other special shaped discs, can be used for this player, otherwise, the player may be damaged.
(e) Do not mount the player at positions with direct sunlight, high humility, much dust or obvious vibration, so as to prevent shortening the use life of the player or damaging the player.
(f) Please clean discs timely, as dust and dirt may cause player performing discontinuous sound.

Product Specification

System Parameters	
Name	Specification
Working Voltage	$10 \mathrm{~V}-16 \mathrm{~V}$
Working Current	MAX 10A
Rated Voltage	12 V
Rated Current	Current changes with different factors, such as playing mode, volume level, etc. In case of 12V rated voltage input, the rated current is ranged from 1.0A to 5.5A
Quiescent Current	3 MA
Working Temperature	$-20^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
Screen Dimension	$7 \mathrm{in} .($ diagonal $)$
Resolution	$800(\mathrm{H}) * \mathrm{RGB}^{*} 480(\mathrm{~V})$ dot

Performance Parameters

Radio Parameters	
Name	Specification
Frequency Range	AM:531K-1629K FM:87.5MHz-108.0MHz
Tuning Mode	Phase-locked Loop Frequency Synthesis Tuning
Display Manner	Screen TFT Chinese OSD Display
Quantity of Saved Radios	FM:18 AM:12
Search Manner	Automatic/Manual
DVD Parameters	
Disc Specification	CD/VCD/CD-R/CD-RW/CD-ROM/DVD-R/Multi-sessionDVD/ Multi-sessionCD
Video Format	NTSC
Audio Format	Mp3/MPEG1/MPEG2/WMA
Audio Output	Stereo (R, L)
Built-in Amplifier Parameter	
Rated power	$4 \times 20 \mathrm{~W}$
Speaker Impedance	4 ohm
USB Parameter	
USB Interface	SCSI
BLUETOOTH Parameters	
Technical Specification	Bluetooth 2.0w
Function Introduction	Telephone Answering, Hanging up and Caller Identification
Reverse Camera	
Function Introduction	When reversing, view the rear condition of vehicle through video

Fault and Troubleshooting

Problem	Possible Cause	Measure
Nothing is displayed on LCD screen	Power switch and ignition switch are not turned on	Turn on the switch
	Fuse Blown	Replace by a new fuse
Unable to play sound	System is in mute state	Press MUTE key to turn off mute
	Loudspeaker box cables are loose	Reconnect
	Loudspeaker box is damaged	Replace by a new loudspeaker box
Unable to play video	Disc is not properly positioned	Properly place the disc onto the tray
Occasional Discontinuous Sound	Disc is dirty or damaged	Clean the disc or use another disc
Discontinuous Sound when Vibration	Disc is dirty or damaged	Clean the disc or use another disc
	Player is not correctly mounted	Ensure the player is firmly fixed

DVD111
Introduction of Panel Button Function and Interface Definition

Button Function

NAVI: Enter Navigation System
SD/MAP: Navigation Card Position
Other buttons are similar to DVD109 and DVD110.

Interface Definition

Similar to DVD109 and DVD110.

Notes

1. Navigation System
(a) Navigation system is only used for auxiliary tips in driving process, please use this system on the basis of following actual traffic rules.
(b) Due to traffic construction development, navigation electronic map data may be inconsistent with the actual road traffic directions, your shall drive on the basis of the actual road traffic directions. Also, update the map data promptly.
(c) During driving, watching or operating the navigator may cause traffic accidents. Please operate the navigator when parking.
(d) The map data only covers Mainland China, excluding Hong Kong, Macao and Taiwan.
(e) The national and provincial boundaries are indicative presentations, which are not the basis for dividing.
(f) As the product is updated continuously, actual operation steps may not totally in accordance with this instruction, subject to the actual operation.
(g) Navigation system setting has speed locking function. After speed exceeds a certain limit, part of functions will be forbidden.
(h) After the product is discarded, please properly dispose it to avoid pollution.
(i) After the navigator has started, a certain period is required for satellite antenna to capture and trace satellites. In this period, no signal will be shown, which is considered to be normal. As long as waiting for a while, normal working state will appear.
(j) GPS signal is weak signal. When obstacles, such as elevated road or buildings, appear above GPS antenna or vehicle is in a tunnel, it may be impossible to receive GPS signal. If the "GPS" characters on the map interface are red, it represents that GPS signal is poorly received.
(k) The system identifies the current position of vehicle by using GPS information, various sensors, road map and other data. However, as GPS satellite is managed by United States Department of Defense, who may reduce the positioning accuracy intentionally in some conditions, thus causing the vehicle position sign deviating from its correct position. When several signal paths occur due to building reflection, positioning error may also increase, and the vehicle position sign may also deviate from its correct position. When precision status of wave lauched by man-made satellite is with bad status, or waves lauched by only two or less man-made satellite can be received, positioning error may also be generated, causing the vehicle position sign deviating from its correct position.

2. Other Parts

Notes are similar to DVD109 and DVD110.

Product Specification

Similar to DVD109 and DVD110.

Performance Parameters

Similar to DVD109 and DVD110.

Fault and Troubleshooting

Similar to DVD109 and DVD110.

Body Electric Apparatus (K5-4G69-4D20 Right Hand Drive)

Function Chart for Numbered Pinsof Intermediate Connection of Wire Harness2
Electric Door and Window 18
Electric Rearview Mirror 19
Airbag 20
Relationship between Wiring Harnesses and Connector Connection Number Chart 21

Function Chart for Numbered Pins of Intermediate Connection of Wire Harness

 (K5-4G69)

Connecting Power Supply Wiring Harness 1

Connecting Engine Compartment Wiring Harness 1

1
3.0
B / R

Connecting Power Supply Wiring Harness B Connecting Engine Compartment Wiring Harness B

Connecting Engine Wiring Harness 1
Connecting Engine Compartment Wiring Harness 1

Connecting Engine Wiring Harness 2
Connecting Engine Compartment Wiring Harness 2

Connecting Instrument Panel and Console Wiring Harness 2

Connecting Engine Compartment Wiring Harness 4

Connecting Instrument Panel and Console Wiring Harness 3

Connecting Cockpit
Wiring Harness

Connecting Instrument Panel and Console Wiring Harness 1

Connecting Engine Compartment Wiring Harness 1

Connecting Instrument Panel and Console Wiring Harness 2

$\begin{aligned} & 33 \\ & 0.85 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$				$\begin{aligned} & 603 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$	$\begin{aligned} & 604 \\ & 0 \cdot 5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$
$\begin{aligned} & 31 \\ & 1.25 \\ & 0 / \mathrm{L} \end{aligned}$	$\begin{aligned} & 90 \\ & 0.35 \\ & L / Y \end{aligned}$		80 O. W	81 O. P	
182 1.25 Y	$\begin{aligned} & 183 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{W} \end{aligned}$	\square		82 0.35 W/B	83 0.35 W/L
$\begin{aligned} & 184 \mathrm{~B} \\ & 1.25 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	L/V 180 1.25	190 0.85 G / R	$\begin{aligned} & 76 \\ & 0.35 \\ & \mathrm{G} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 85 \\ & 0.35 \\ & \mathrm{P} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 50 \mathrm{GG} \\ & 2.0 \\ & \mathrm{~B} \end{aligned}$

Connecting Engine Compartment Wiring Harness 2

$$
\mathrm{C} 11 \mathrm{C}
$$

$\begin{aligned} & \text { and } \\ & \text { 品 } \\ & \text { Bi } \end{aligned}$	(til	\searrow		$\underbrace{200}_{20}$	
		(102	$\begin{aligned} & 6.85 \\ & 0.085 \\ & 1 / 6 \end{aligned}$	${ }_{\substack{0 \\ \hline 8.85}}$	(1)
		\square		$\begin{aligned} & \frac{85}{3 / 5} \\ & 0.5 \\ & 0 / 8 \end{aligned}$	(69,
		$\begin{aligned} & 316 \\ & \begin{array}{l} 316 \\ 8.0 \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 0.5 \\ & 0.10 \end{aligned}$	[8,

Connecting Cockpit Wiring Harness2

	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	\triangle			${ }_{\substack{\text { mig } \\ 80 \\ 80}}^{10}$
${ }_{12}^{12}$	${ }_{80}^{085}$				
	$\begin{gathered} 3.3 \\ \substack{05 \\ 68} \\ \hline \end{gathered}$			¢	
(in	$\begin{array}{\|l\|} \hline 8 \\ 05 \\ 05 \\ 00 \end{array}$	${ }_{13}^{13}$	[190		$\underset{\substack { 505 \\ \begin{subarray}{c}{\text { bic } \\ \text { mic }{ 5 0 5 \\ \begin{subarray} { c } { \text { bic } \\ \text { mic } } }\end{subarray}}{ }$

Connecting Instrument Wiring Harness 2

Photosensitive Sensor

Connecting Instrument Wiring Harness

Connecting Transmission Wiring Harness Assembly

Connecting Instrument Panel Wiring Harness

Connecting Roof Wiring Harness

Connecting Cockpit Wiring Harness

$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$			$\begin{aligned} & \hline 7 \mathrm{E} \\ & 0.85 \\ & \mathrm{~B} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 6 \mathrm{E} \\ & 0.85 \\ & \mathrm{~W} / \mathrm{G} \\ & \hline \end{aligned}$
260	18C	26	50M	29B
2.0	0.85	0.85	2.0	0.85
R/G	R/L	Y/R	,	L/Y

$\begin{aligned} & 6 \\ & 0.85 \\ & W / G \end{aligned}$	$\begin{aligned} & 7 \\ & 0.85 \\ & \mathrm{~B} / \mathrm{G} \end{aligned}$			$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$
29	50	26	18	260
0.85	2. 0	0.85	0.85	2.0
L/Y	B	Y/R	R/L	R/G

Connecting Left Front Door Wiring Harness 1
Connecting Cockpit Wiring Harness 1

	21 0.85 G			T02 0.5 Br	$\begin{aligned} & \hline 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \\ & \hline \end{aligned}$
60A	T01	504G	B24	34	13
0.5	0.5	0.5	0.5	0.5	0.5
G/R	Br / L	W/L	Gr/W	W/B	Gr / R

$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { T02 } \\ & \text { T02A } \end{aligned}$			21 0.85 G	
13	34	B24	504		60
0.5	0.5	0.5	0.5	T01	0.5
Gr/R	W/B	Gr/W	W/L		G/R

$\begin{aligned} & 69 \\ & 0.85 \\ & G / Y \end{aligned}$	$\begin{aligned} & 36 \\ & 0.5 \\ & Y / R \end{aligned}$				$\begin{aligned} & 35 \\ & 1.25 \\ & \mathrm{Y} \end{aligned}$
50L	612	611	D50	610	609
1. 25	0.5	0.5	1. 25	0.5	0.5
B	G/Br	G/L	B	G/R	G/B

Connecting Frame

Wiring Harness
Connecting Floor
Wiring Harness

Connecting Right Front
Door Wiring Harness 1

Connecting Cockpit
Wiring Harness 1

Connecting Right Rear Door Wiring Harness 2

$\begin{aligned} & \hline 50 \\ & 2.0 \\ & \text { B } \\ & \hline \end{aligned}$	18 0.85 R/L			261 2.0 R
20	21	22	13	12
0. 85	0.85	0. 85	0.85	0.85
Y/W	G	R/Y	Gr / R	Gr/B

Connecting Cockpit
Wiring Harness 2

Connecting Right Rear Door Wiring Harness 1

Connecting Floor
Wiring Harness 1

$\begin{aligned} & 29 \mathrm{~A} \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 30 \\ & 0.85 \\ & \mathrm{Y} / \mathrm{L} \end{aligned}$			C44 0.5 R/L
B73	B74	8	50 H	T50
0.5	0.5	0.85	1. 25	0.5
B/R	B/R	O/G	B	B

Connecting Back Door
Transition Wiring Harness 2

$\begin{aligned} & \mathrm{C} 44 \\ & 0.5 \\ & \mathrm{R} / \mathrm{L} \end{aligned}$			$\begin{aligned} & 30 \\ & 0.85 \\ & \mathrm{Y} / \mathrm{L} \end{aligned}$	29 1. 25 L/Y
T50	50	8	B74	B73
0.5	1. 25	0.85	0.5	0. 85
B	B	Or/G	B/R	B/R

Connecting Cockpit Wiring Harness

Connecting Back Door Transition Wiring Harness 1

Connecting Cockpit Wiring Harness 1

$\begin{aligned} & \hline \mathrm{T} 31 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{Y} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 504 \\ & 0.5 \\ & \text { W/L } \\ & \hline \end{aligned}$
T32	34	18A
0.5	0.5	0. 85
$\mathrm{Br} / \mathrm{Gr}$	W/B	R/L

Connecting Right Rear Door
Wiring Harness 2

Connecting Floor Wiring Harness 2

$\begin{aligned} & \hline 30 \\ & 0.85 \\ & \text { Y/L } \end{aligned}$			$\begin{aligned} & \text { 29 } \\ & 1.25 \\ & \text { L/Y } \end{aligned}$
50	8	B74	B73
1. 25	0. 85	0.5	0.85
B	Or/G	B/R	B/R

Connecting Back Door
Wiring Harness 1

Connecting Back Door Transition Wire 1

C44 0.5 R/L		37 0.5 G	$\begin{aligned} & 33 \\ & 0.85 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$
T50 0.5 B	711 0.5 R/W	32 0.85 Or	

$\begin{aligned} & 33 \\ & 0.85 \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 37 \\ & 0.5 \\ & \mathrm{G} \end{aligned}$		C44 0.5 $0 / \mathrm{L}$ R
	$\begin{aligned} & 32 \\ & 0.85 \\ & \text { Or } \end{aligned}$	$\begin{aligned} & 711 \\ & 0.5 \\ & \mathrm{R} / \mathrm{W} \end{aligned}$	T50 0.5 0

Connecting Back Door Wiring Harness 2

Connecting Back Door Transition Wire 2

Connecting Reversing Radar Transition Wiring Harness

Connecting Cockpit
Wiring Harness

881	882
0.5	0.5
Y / R	Y / L
885	50
0.5	0.85
Y / B	B

Connecting Reversing
Radar Wiring Harness 1

Connecting Transition
Wiring Harness 1

Connecting Reversing Radar Wiring Harness 2

Connecting Transition Wiring Harness 2

166	168	315 D
2.0	2.0	2.0
G	B / L	Br
50 D	45	
2.0	0.5	
B	G / V	

Connecting Seat Heating Wiring Harness
Connecting Cockpit Wiring Harness

Connecting License Plate Wiring Harness

Connecting Back Door Wiring Harness
(K5-4D20)

Connecting Power Supply Wiring Harness 1

Connecting Power Supply Wiring Harness B

\square					
$\begin{aligned} & 711 \mathrm{~B} \\ & 0 \\ & 0.5 \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & 0.5 \end{aligned}$	\square		${ }^{46}{ }^{0} 5$$W / R$	
401	63	41	E44	34	281
0.5	0.5	0.85	0.85	0.85	0.5
L	$\mathrm{Br} / \mathrm{Gr}$	L/R	R/Y	R/L	G/Y
390	116		D44		
0.5	0.5		0.85		0.5
G/Y	R/W		R/L		6/L
311	95		${ }^{403 \mathrm{~B}}$	79	
0.35	0.5		1. 25	0.5	
R/Y	L/0		R	L	

Connecting Instrument Panel and Console Wiring Harness 4

Connecting Engine Compartment Wiring Harness 1

Connecting Engine
Compartment Wiring Harness 2

Connecting Engine Compartment Wiring Harness

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 46 \\
\& 0.5 \\
\& \mathrm{~W} / \mathrm{R}
\end{aligned}
\] \& \& \& \& \[
\begin{aligned}
\& \hline 47 \\
\& 0.5 \\
\& \mathrm{Y} / \mathrm{B}
\end{aligned}
\] \& 71
0.35
\(\mathrm{R} / \mathrm{B}\) \\
\hline \[
\begin{aligned}
\& 281 \\
\& 0.35 \\
\& \mathrm{G} / \mathrm{Y}
\end{aligned}
\] \& \[
\begin{aligned}
\& 34 \\
\& 0.85 \\
\& \mathrm{~W} / \mathrm{B}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { E44 } \\
\& 0.5 \\
\& R / Y
\end{aligned}
\] \& \[
\begin{aligned}
\& 41 \\
\& 0.5 \\
\& \mathrm{~L} / \mathrm{R}
\end{aligned}
\] \& \[
\begin{aligned}
\& 63 \\
\& 0.35 \\
\& \mathrm{Br} / \mathrm{Gr}
\end{aligned}
\] \& \[
\begin{aligned}
\& 401 \\
\& 0.5 \\
\& \mathrm{~L}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 282 \\
\& 0.35 \\
\& \mathrm{G} / \mathrm{L}
\end{aligned}
\] \& \& D44
0.5
R/L \& \& \[
\begin{aligned}
\& 116 \\
\& 0.5 \\
\& \mathrm{R} / \mathrm{W}
\end{aligned}
\] \& \\
\hline \begin{tabular}{l}
50 \\
0.5 \\
0.5 \\
\hline
\end{tabular} \& 79D

0.5
L \& 403 A
1.25

R \& \& $$
\begin{aligned}
& 95 \\
& 0.35 \\
& \mathrm{~L} / \mathrm{Or}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 311 \\
& 0.35 \\
& \mathrm{R} / \mathrm{Y}
\end{aligned}
$$
\]

\hline
\end{tabular}

Connecting Engine Compartment
Wiring Harness 4

$\begin{aligned} & 29 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 315 \\ & 2.0 \\ & \mathrm{Br} \end{aligned}$			$\begin{aligned} & 511 \\ & 0.5 \\ & \mathrm{~L} / \mathrm{B} \end{aligned}$	135 1.25 L/W
	$\begin{aligned} & \text { D44B } \\ & 0.85 \\ & \text { R/L } \end{aligned}$	$\begin{aligned} & \text { E44A } \\ & 0.85 \\ & \text { R/Y } \end{aligned}$		$\begin{aligned} & 777 \\ & 0.5 \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 895 \\ & 0.5 \\ & G / R \end{aligned}$
$\begin{aligned} & 614 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{Br} \end{aligned}$	$\begin{aligned} & 613 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$	\square		$\begin{aligned} & 390 \\ & 0.5 \\ & G / Y \end{aligned}$	$\begin{aligned} & 18 \\ & 0.85 \\ & 8 / 5 \end{aligned}$
$\begin{aligned} & 615 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$	50A 2.0	$\begin{aligned} & 609 \\ & 0.5 \end{aligned}$	610 0.5 G/R	611 0.5 G/L	612 0.5 G / V

Connecting Cockpit Wiring Harness

Connecting Instrument Wiring Harness and Console Wiring Harness 3
\cot

Connecting Engine Compartment Wiring Harness 3

$\begin{aligned} & 135 \\ & 0.85 \\ & L / W \end{aligned}$	511 0.5 L/B 17			$\begin{aligned} & 315 \mathrm{~A} \\ & 2.0 \\ & \mathrm{Br} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \\ & \hline \end{aligned}$
895	777		E44	D44	
0.5	0.5		0.5	0.5	
G/R	Y		R/Y	R/L	
	390	\square		613	614
0.85	0.5			0.5	0.5
R/L	G/Y			Br / B	Gr / B
612	611	610	609	50Y	615
0.5	0.5	0.5	0.5	2.0	0.5
G/V	G/L	G/R	G/B	B	Br / R

Connecting Engine Compartment Wiring Harness

Connecting Engine Compartment Wiring Harness 1

$\begin{aligned} & 122 \\ & 0.5 \\ & G / R \end{aligned}$				$\begin{aligned} & \text { B42D } \\ & 0.5 \\ & \mathrm{Br} / \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { B39D } \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$
$\begin{aligned} & 31 \\ & 1.25 \\ & \mathrm{O} / \mathrm{L} \end{aligned}$	$\begin{aligned} & 90 \\ & 0.35 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$		$\begin{aligned} & 80 \\ & 0.35 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 \\ & 0.35 \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & 74 \\ & 0.5 \\ & \mathrm{~L} / \mathrm{W} \end{aligned}$
$\begin{aligned} & 182 \\ & 1.25 \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 183 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{W} \end{aligned}$			$\begin{aligned} & 82 \\ & 0.35 \\ & \text { W/B } \end{aligned}$	$\begin{aligned} & 83 \\ & 0.35 \\ & \text { W/L } \end{aligned}$
$\begin{aligned} & 184 \mathrm{~B} \\ & 1.25 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 380 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 191 \\ & 0.85 \\ & G / R \end{aligned}$	$\begin{aligned} & 76 \\ & 0.35 \\ & \text { G/B } \end{aligned}$	$\begin{aligned} & 85 \\ & 0.35 \\ & \mathrm{P} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 50 \mathrm{G} \\ & 2.0 \\ & \text { B } \end{aligned}$

Connecting Cockpit Wiring Harness 1B

Connecting Cockpit Wiring Harness 1A

$\begin{aligned} & \mathrm{T} 02 \\ & 0.5 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & \mathrm{T} 01 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{L} \end{aligned}$			$\begin{aligned} & 260 \\ & 2.0 \\ & \mathrm{R} / \mathrm{G} \end{aligned}$	
$\begin{aligned} & \mathrm{T} 41 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{T} 42 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{V} \end{aligned}$	$\begin{aligned} & 162 \\ & 0.5 \\ & B / Y \end{aligned}$	$\begin{aligned} & 6 \\ & 0.85 \\ & W / G \end{aligned}$	$\begin{aligned} & 7 \\ & 0.85 \\ & B / W \end{aligned}$	$\begin{aligned} & 12 \\ & 0.85 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$
$\begin{aligned} & \mathrm{T} 32 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{Gr} \end{aligned}$	$\begin{aligned} & \mathrm{T} 31 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{Y} \end{aligned}$			$\begin{aligned} & 375 \\ & 0.5 \\ & G / B \end{aligned}$	$\begin{aligned} & 69 \\ & 0.5 \\ & G / Y \end{aligned}$
$\begin{aligned} & \mathrm{T} 51 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{T} 52 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 316 \\ & 2.0 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 13 \\ & 0.85 \\ & \mathrm{Gr} / \mathrm{R} \end{aligned}$	$\begin{aligned} & 45 \\ & 0.5 \\ & G / V \end{aligned}$	$\begin{aligned} & 42 \\ & 0.85 \\ & 6 / V \end{aligned}$

Connecting Cockpit
Wiring Harness 2

Connecting Transmission Wiring Harness Assembly

$\begin{aligned} & 37 \\ & 0.5 \\ & 6 \end{aligned}$	$\begin{aligned} & 260 \\ & 2.0 \\ & R / G \end{aligned}$			$\begin{aligned} & \text { To1 } \\ & 0.5 \\ & \text { BriL } \end{aligned}$	$\begin{aligned} & \mathrm{TO2} \\ & 0.5 \\ & \mathrm{Br}^{2} \end{aligned}$
$\begin{aligned} & { }_{12}^{12} \\ & 12 \mathrm{~A} \end{aligned}$? 0.85 B / W	6 0.85 W/G	$\begin{aligned} & 162 \\ & 0.5 \\ & B Y \end{aligned}$	$\begin{aligned} & \text { T42 } \\ & 0.5 \\ & \text { BITW } \end{aligned}$	$\begin{aligned} & \hline 441 \\ & 0.5 \\ & \text { Br/R } \end{aligned}$
989 0.85 68	375 0.5 0.6 $6 / 8$		\square	$\begin{aligned} & \mathrm{T} 31 \\ & 0.5 \\ & \mathrm{~B} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { T32 } \\ & 0.5 \\ & \text { BriGG } \end{aligned}$
42 0.85 $6 N$	45 0.5 0.	$\begin{aligned} & 13 \\ & 13 \mathrm{~A} \end{aligned}$		T52 0.5 BrB	$\begin{aligned} & 151 \\ & 0.5 \\ & \text { Bir } \end{aligned}$

Connecting Instrument Wiring Harness 2

Connecting Instrument Panel Wiring Harness

50	34	135			163	504
0.85	0.5	0.85				

24					
0.85					

Connecting Left Front Door Wiring Harness 1

$\begin{aligned} & 6 \\ & 0.85 \\ & \text { W/G } \end{aligned}$	$\begin{aligned} & 7 \\ & 0.85 \\ & B / W \end{aligned}$			$\begin{aligned} & 24 \\ & 0.85 \\ & \text { B/G } \end{aligned}$
29	50	26	18	260
0.85	2.0	0.85	0.85	2.0
L/Y	B	Y/R	R/L	R/G

Connecting Cockpit Wiring Harness 1

	$\begin{aligned} & 21 \mathrm{~A} \\ & 0.85 \\ & \mathrm{G} \end{aligned}$			$\begin{aligned} & \text { T02 } \\ & 0.5 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$
60A	T01	504G	B24	34	13
0.5	0.5	0.5	0.5	0.5	0.5
G/R	Br/L	W/L	Gr/W	W/B	Gr/R

$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { T02 } \\ & \text { T02A } \end{aligned}$			$\begin{aligned} & 21 \\ & 0.85 \\ & G \end{aligned}$	
13	34	B24	504	$\begin{aligned} & \text { T01 } \\ & \text { T01A } \end{aligned}$	60
0.5	0.5	0.5	0.5		0.5
Gr / R	W/B	Gr/W	W/L		G/R

Connecting Left Front Door Wiring Harness 2
Connecting Cockpit Wiring Harness 2

$\begin{aligned} & 69 \\ & 0.85 \\ & G / Y \end{aligned}$	$\begin{aligned} & 36 \\ & 0.5 \\ & \mathrm{Y} / \mathrm{R} \end{aligned}$				
50L	612	611	D50	610	609
1. 25	0.5	0.5	1. 25	0.5	0.5
B	G/V	G/L	B	G / R	G/B

Connecting Frame Wiring Harness

Connecting Floor Wiring Harness

$\begin{aligned} & \text { B12 } \\ & 0.5 \\ & \text { Gr/B } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 0.85 \\ & \mathrm{~B} / \mathrm{W} \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{T} 41 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{T} 42 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{W} \end{aligned}$
B22	6	29	504H	42	34C
0.5	0.85	0.85	0.5	0.5	0.5
Gr/W	W/G	L/Y	W/L	G/V	W/B

$\begin{aligned} & \text { T42 } \\ & \text { T42A } \end{aligned}$	$\begin{aligned} & \text { T41 } \\ & \text { T41A } \end{aligned}$			$\begin{aligned} & 7 \\ & 0.85 \\ & \mathrm{~B} / \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B12 } \\ & 0.5 \\ & \text { Gr/B } \end{aligned}$
34	42	504	29	6	B22
0.5	0.5	0.5	0.85	0. 85	0.5
W/B	G/V	W/L	L/Y	W/G	Gr/w

261 2. 0 R			$\begin{aligned} & 18 \\ & 0.85 \\ & \mathrm{R} / \mathrm{L} \end{aligned}$	50 2.0 B 20
12A	13A	22		20
0.5	0.5	0. 85	21 A	0. 85
Gr/B	Gr / R	R/Y		Y/W

	$\begin{aligned} & 18 \\ & 0.85 \\ & \mathrm{R} / \mathrm{L} \\ & \hline 01 \end{aligned}$			261 2.0 R
20	21	22	13	12
0. 85	0. 85	0. 85	0. 85	0.85
Y/W	G	R/V	Gr/R	Gr/B

Connecting Right Rear Door Wiring Harness 2

		$\begin{aligned} & 261 \mathrm{~A} \\ & 2.0 \\ & \mathrm{R} \end{aligned}$
6B	50N	7B
0. 85	2.0	0.85
W/G	B	B/W

Connecting Right Rear Door Wiring Harness 2

T31 0.5 Br / Y		$\begin{aligned} & 504 \\ & 0.5 \\ & \text { W/L } \end{aligned}$
T32	34	18A
0.5	0.5	0. 85
$\mathrm{Br} / \mathrm{Gr}$	W/B	R/L

Connecting Right Rear Door Wiring Harness 2

6C 0.85 W/G				$\begin{aligned} & \text { 50B } \\ & 2.0 \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \mathrm{~A} \\ & 2.0 \\ & \mathrm{R} / \mathrm{G} \end{aligned}$
T51	T52	7C	34	504	18B
0.5	0.5	0.85	0.5	0.5	0.85
Br / G	Br / B	B/W	W	V/L	R/L

Connecting Left Rear Door Wiring Harness

$\begin{aligned} & 260 \\ & 2.0 \\ & \mathrm{R} / \mathrm{G} \end{aligned}$	$\begin{aligned} & 50 \\ & 2.0 \\ & \text { B } \end{aligned}$				$\begin{aligned} & 6 \\ & 0.85 \\ & \text { W/G } \end{aligned}$
18	504	34	7	T52	T51
0.85	0.5	0.5	0. 85	$\mathrm{T} 52 \mathrm{~A}$	T51A
R/L	V/L	W	B/W		

Connecting Floor Wiring Harness

$\begin{aligned} & \text { 29A } \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 30 \\ & 0.85 \\ & \text { Y/L } \end{aligned}$			$\begin{aligned} & \text { C44 } \\ & 0.5 \\ & \text { R/L } \end{aligned}$
B73	B74	8	50 H	T50
0.5	0.5	0.85	1.25	0.5
B/R	B/R	O/G	B	B

Connecting Back Door Transition Wiring Harness 2

C 44 0.5 R / L							30 0.85 Y / L	29 1.25 $\mathrm{~L} / \mathrm{Y}$
T 50	50	8	B 74	B 73				
0.5	1.25	0.85	0.5	0.85				
B	B	$0 r / \mathrm{G}$	B / R	B / R				

Connecting Cockpit Wiring Harness

33 C 0.85 R / B				
711				
0.5				
\mathbf{W} / G	O	O		

Connecting Cockpit Wiring Harness 1

Connecting Back Door Transition Wiring Harness 1

$\begin{aligned} & 30 \\ & 0.85 \\ & \mathrm{Y} / \mathrm{L} \end{aligned}$			$\begin{aligned} & 29 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$
50	8	B74	B73
1. 25	0.85	0.5	0.85
B	0r/G	B/R	B/R

Connecting Back Door Wiring Harness 1
Connecting Back Door Transition Wiring Harness 1

$\begin{aligned} & \text { C44 } \\ & 0.5 \\ & \text { R/L } \end{aligned}$	+	$\begin{aligned} & 37 \\ & 0.5 \\ & G \end{aligned}$	$\begin{aligned} & 33 \\ & 0.85 \\ & \text { R/B } \end{aligned}$
T50	711	32	
0.5	0.5	0.85	
B	R/W	Or	

Connecting Back Door Wiring Harness 2

Connecting Back Door Transition Wiring Harness 2

Connecting Reversing
Radar Transition

881	882
0.5	0.5
Y / R	Y / L
885	50
0.5	0.85
Y / B	B

Connecting Reversing
Radar Wiring Harness 1
Wiring Harness

Connecting Reversing
Radar Wiring Harness 2
Wiring Harness

166	168	315 D
2.0	2.0	2.0
G	B / L	Br
50 D	45	
2.0	0.5	
B	G / V	

Connecting Seat Heating Wiring Harness

Connecting Transition Wiring Harness 1

Connecting Transition Wiring Harness 2

Connecting Cockpit Wiring Harness

315 D	168	
2.0	166	
2.0		
Br	B / L	G
	45	50 D
	0.5	2.0
	G / V	B

Connecting Cockpit
Wiring Harness

Connecting License Plate Wiring Harness

Connecting Back Door Wiring Harness

Electric Door and Window

Electric Rearview Mirror

Electric Rearview Mirror Switch

Airbag

Relationship between Wiring Harnesses and Connector Connection Number Chart

Body Electric Apparatus (K5-4D20AT Right Hand Drive)

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness \qquad
Air Conditioner. \qquad 9
Relationship between Wiring Harnesses and Connector Connection Number Chart \qquad 10

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness

Connecting Power Supply Wiring Harness B

Connecting Engine Wiring Harness 1

Connecting Instrument Panel and Console Wiring Harness 4

Connecting Engine Compartment Wiring Harness 1

Connecting Engine Compartment Wiring Harness 2

$-\cos$

Connecting Engine Compartment Wiring Harness 3

$\begin{aligned} & 135 \\ & 0.85 \\ & \text { LW } \end{aligned}$	511 0.5 LB			$\begin{aligned} & \hline 315 \mathrm{~A} \\ & 2.0 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 29 \\ & 1.25 \\ & L Y \end{aligned}$
895	777		E44	D44	
0.5	0.5		0.5	0.5	1.25
G/R	Y		RY	RL	Y
18	390			613	614
0.85	0.5		\square	0.5	0.5
RL	G/Y			Br'B	$\mathrm{Gr} / \mathrm{Br}$
612	611	610	609	50Y	
0.5	0.5	0.5	0.5	2.0	
G/V	G/L	G/R	G/B	B	

Connecting Engine Compartment Wiring Harness

Connecting Cockpit Wiring Harness
cot

Connecting Engine
Compartment Wiring Harness 1

Connecting Instrument Panel and Console Wiring Harness 2

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 122 \\
\& 0.5 \\
\& 6 / R
\end{aligned}
\] \& \& \multicolumn{2}{|l|}{} \& \[
\begin{aligned}
\& \text { B42D } \\
\& 0.5 \\
\& \mathrm{Br} / 6
\end{aligned}
\] \& \[
\begin{aligned}
\& B 39 D^{8} \\
\& 0.5 \\
\& B r / B
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 31 \\
\& 1.25 \\
\& 01
\end{aligned}
\] \& \[
\begin{aligned}
\& 90 \\
\& 0.35 \\
\& L Y
\end{aligned}
\] \& \& \begin{tabular}{l}
80 \\
\\
\hline 0.35 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 81 \\
\& { }_{\mathrm{p}}^{0.35} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 74 \\
\& 0.5 \\
\& i w
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 182 \\
\& 1.25 \\
\& y
\end{aligned}
\] \& \[
\begin{aligned}
\& 183 \\
\& 1.25 \\
\& L \mathrm{~N}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 82 \\
\& 0.35 \\
\& \text { WB }
\end{aligned}
\] \& \[
\begin{aligned}
\& 83 \\
\& 0.35 \\
\& \text { WLI }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 184 B \\
\& { }_{1.25}^{1.5} \\
\& G r i B
\end{aligned}
\] \& \[
\begin{aligned}
\& 380 \\
\& 1.25 \\
\& \text { iy }
\end{aligned}
\] \& 191
0.85
6.8 \& l6

0.35

$G 18$ \& \[
$$
\begin{aligned}
& 85 \\
& 0.35 \\
& \text { PM }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 506 \\
& 20 . \\
& B
\end{aligned}
$$
\]

\hline
\end{tabular}

Connecting Engine Compartment Wiring Harness 2

Connecting Left Front Door Wiring Harness 1

Connecting Cockpit Wiring Harness 1

| | 21 A
 0.85
 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Connecting Left Front Door Wiring Harness 2

Connecting Cockpit Wiring Harness 2

$\begin{aligned} & 69 \\ & 0.85 \\ & G / Y \end{aligned}$	$\begin{aligned} & 36 \\ & 0.5 \\ & \text { Y/R } \end{aligned}$				
50L	612	611	D50	610	609
1.25	0.5	0.5	1.25	0.5	0.5
B	G/	G/L	B	6/R	G/B

Connecting Frame Wiring Harness

Connecting Floor Wiring Harness

B12 0.5 Gr/B	$\begin{aligned} & 7 \mathrm{~A} \\ & 0.85 \\ & \mathrm{~B} / \mathrm{W} \end{aligned}$			$\begin{aligned} & \hline \mathrm{T} 41 \\ & 0.5 \\ & \mathrm{Br} / \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T42 } \\ & 0.5 \\ & \text { Br'W } \end{aligned}$
B22	6	29	504 H	42	34 C
0.5	0.85	0.85	0.5	0.5	0.5
Gr/W	W/G	L/Y	W/L	G/	W/B

Connecting Right Front Door Wiring Harness 1

$\begin{aligned} & \text { T42 } \\ & \text { T42A } \end{aligned}$	T41 T41A			$\begin{aligned} & 7 \\ & 0.85 \\ & B / W \end{aligned}$	$\begin{aligned} & \mathrm{B} 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$
34	42	504	29	6	B22
0.5	0.5	0.5	0.85	0.85	0.5
W/B	G/V	W/L	L/Y	W/G	Gr/w

Connecting Cockpit Wiring Harness 1

261 2.0 R			18 0.85 R/L	50U 2.0 B
12A	13A		21	20
0.5	0.5	0.85	21A	0.85
Gr/B	Gr/R	RY		YW

Connecting Right Front Door Wiring Harness 2

$\begin{aligned} & 50 \\ & 2.0 \\ & \text { B } \end{aligned}$	$\begin{aligned} & 18 \\ & 0.85 \\ & \text { R/L } \end{aligned}$			$\begin{aligned} & 261 \\ & 2.0 \\ & R \end{aligned}$
20	21	22	13	12
0.85	0.85	0.85	0.85	0.85
Y/W	G	RY	Gr/R	Gr/B

Connecting Cockpit Wiring Harness 2

	261 A
6 B	
0.85	
$\mathrm{~W} / \mathrm{G}$	50 N
2.0	7 B

Connecting Right Rear Door Wiring Harness 1

$\begin{aligned} & \text { T31 } \\ & 0.5 \\ & B r Y \end{aligned}$		$\begin{aligned} & 504 \\ & 0.5 \\ & \text { W/L } \end{aligned}$
T32	34	
0.5	0.5	0.85
$\mathrm{Br} / \mathrm{Gr}$	W/B	R/L

Connecting Right Rear Door Wiring Harness 2

Connecting Floor Wiring Harness 2

Connecting Left Rear Door Wiring Harness

| 200
 2.0
 RMG | 50
 2.0
 B |
| :--- | :--- | :--- | :--- | :--- | :--- |

Connecting Floor Wiring Harness

Connecting Back Door Transition Wiring Harness 2

| C44 |
| :--- | :--- | :--- | :--- | :--- |
| 0.5 |
| R / L |

Connecting Cockpit Wiring Harness

33 C 0.85 R/B				
711	32			
0.5	0.85	0.5	37	
W/G	0	W/B	0.85 G	

Connecting Back Door Transition Wiring Harness 1

Connecting Cockpit Wiring Harness 1

30		
0.85		29 Y / L
50	8	B 74
1.25	0.85	0.5
B	$0 \mathrm{r} / \mathrm{G}$	B / R

Connecting Back Door Wiring Harness 1

Connecting Back Door Transition Wiring Harness 1

Connecting Back Door Wiring Harness 2

Connecting Back Door Transition Wiring Harness 2

Connecting Reversing Radar Transition Wiring Harness

Connecting Reversing Radar Wiring Harness 1

Connecting Reversing Radar Wiring Harness 2

Connecting Seat Heating Wiring Harness

Connecting Transition Wiring Harness 2

Connecting Cockpit Wiring Harness

Connecting License Plate Wiring Harness

Connecting Back Door Wiring Harness

Body Electric Apparatus
 (2010-4G69-2.5TCI-4D20 Left Hand Drive, H3 Shifted to H5 Interior Trim)

Function Chart for Numbered Pinsof Intermediate Connection of Wire Harness 2
Headlamp (2010) 15
Headlamp (H3 Shifted to H5 Interior Trim) 16
Control Switch Assembly 17
Relationship between Wiring Harnesses and Connector Connection Number Chart 18
BCM Light Washer and Wiper 19
Lighting System (2010). 21

Function Chart for Numbered Pins of Intermediate Connection of Wire Harness

[2010 Gasoline Model I]

Connecting Engine Compartment Wiring Harness 1

Connecting Engine Compartment Wiring Harness 4

$\begin{gathered} 29 \mathrm{~A} \\ \mathrm{LY} \\ 1.25 \\ \hline \end{gathered}$	$\begin{gathered} 302 \\ Y \mathbb{I W} \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} \hline 301 \\ L R \\ 1.25 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ \text { LII } \\ 1.25 \end{gathered}$	$\begin{aligned} & 122 \\ & \text { GR } \\ & 0.5 \end{aligned}$
$\begin{gathered} 69 C \\ 6 Y \\ 0.85 \end{gathered}$	$\begin{aligned} & 64 \\ & \text { RL } \\ & 0.5 \end{aligned}$	$\begin{aligned} & 438 \\ & G W \\ & 0.5 \end{aligned}$	$\begin{gathered} 423 \\ V \\ 0.5 \end{gathered}$	$\begin{aligned} & 164 \\ & L B \\ & 0.5 \end{aligned}$	$\begin{gathered} 310 \\ \mathrm{~L} \\ 0.35 \end{gathered}$	$\begin{gathered} 442 \\ G \\ 0.5 \end{gathered}$
$\begin{aligned} & 405 \mathrm{~A} \\ & \mathrm{Brlif} \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{gathered} 34 \mathrm{~A} \\ \mathrm{RL} \\ 1.25 \\ \hline \end{gathered}$	$\begin{gathered} 439 \\ R L \\ 0.75 \\ \hline \end{gathered}$	$\begin{gathered} 173 \mathrm{~B} \\ \text { RIV } \\ 0.85 \end{gathered}$	$\begin{gathered} 451 \mathrm{~A} \\ \mathrm{RH} \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 452 \\ & R L \\ & 0.5 \end{aligned}$	$\begin{aligned} & 517 \\ & G Y \\ & 0.5 \end{aligned}$
$\begin{gathered} 150 \mathrm{~A} \\ \mathrm{RL} \\ 3.0 \end{gathered}$		$\begin{aligned} & 155 \mathrm{~A} \\ & \text { WR } \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { 4A } \\ & \text { RG } \\ & 3.0 \end{aligned}$	$\begin{gathered} 500 \\ G \\ 2.0 \end{gathered}$	

Connecting Engine Compartment Wiring Harness 3

29 A L/Y 1.25	315 A Br 2.0				135 L / W 1.25
17A	D44B	E44A			36A
R/Y	R/L	R/Y			Y/R
1.25	0.85	0.85			0.5
614	613				
$\mathrm{Gr} / \mathrm{Br}$	Br / B	\square			
0.5	0.5				
615	50 C	609	610	611	612
Br/R	B	G/B	G/R	G/L	G/V
0.5	2.0	0.5	0.5	0.5	0.5

Connecting Cockpit Wiring Harness

$\begin{aligned} & \hline \mathrm{TO2} \\ & \mathrm{Br} \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { T01 } \\ & \text { BrL } \\ & 0,5 \\ & \hline \end{aligned}$			$\begin{gathered} 261 \\ R \\ R .0 \end{gathered}$	$\begin{aligned} & 37 \mathrm{C} \\ & \mathrm{Lg} \\ & 0.85 \end{aligned}$
141	T42	162	6 A	7 A	12
BrR	BrIV	BY	WG	B ${ }^{\text {W }}$	GrB
0.5	0,5	0.5	0.85	0.85	0.85
T32	T31	\square		375	69D
BrGr	Bry			GB	GY
0.5	0,5			0.5	0.5
T51	T52	316	13	45J	42 C
Brg	BrB	Br	GrR	GV	GV
0.5	0,5	2.0	0.85	0.5	0.85

Connecting Cockpit Wiring Harness 2

Connecting Engine Compartment Wiring Harness

Connecting Instrument Wiring Harness 2

$\begin{gathered} \text { C44B } \\ \text { RL } \\ 0.5 \end{gathered}$		$\begin{gathered} 37 \mathrm{~A} \\ 6 \\ 0.5 \end{gathered}$	$\begin{gathered} 33 \mathrm{~A} \\ \text { RB } \\ 0.85 \end{gathered}$
$\begin{gathered} 750 \\ B \\ 0.5 \end{gathered}$	711C RWW 0.5	$\begin{gathered} 32 \mathrm{~A} \\ 0 \\ 0.85 \end{gathered}$	

Connecting Tail Gate 2

Connecting Reversing Radar
Transition Wiring Harness

Connecting Reversing Radar Wiring Harness 1

Connecting Tail Gate Transition Wiring Harness 2

Connecting Cockpit Wiring Harness

Connecting Transition Wiring Harness 1

Connecting Transition Wiring Harness 2

Connecting Cockpit Wiring Harness
[2010 Gasoline Model II (difference between II and I)]

Connecting Left Rear

Connecting Cockpit
Door Wiring Harness 1
Wiring Harness 1

[H3 Shifted to H5 Interior Trim Gasoline Model I (difference with 2010 Gasoline Model I)]

Connecting Right Front Door Wiring Harness 1

Connecting Cockpit Wiring Harness 1 (Non-anti-pinch)

Connecting Cockpit Wiring Harness 1 (Anti-pinch)

$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$			$\begin{aligned} & 7 \mathrm{E} \\ & 0.85 \\ & B N \end{aligned}$	$\begin{aligned} & \text { 6E } \\ & 0.85 \\ & \text { WIG } \end{aligned}$
261	18C	26	50 M	298
2.0	0.85	0.85	2.0	0.85
R	RL	Y/R	B	LY

Connecting Right Front Door Wiring Harness 2

Connecting Cockpit
Wiring Harness 2

$\begin{aligned} & \mathrm{B12} \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 7 \\ & 0.85 \\ & B / W \end{aligned}$		$\begin{aligned} & \text { TO1 } \\ & 0.5 \\ & \text { Br/L } \end{aligned}$	$\begin{aligned} & \mathrm{T} 02 \\ & 0.5 \\ & \mathrm{Br} \end{aligned}$
$\begin{aligned} & \text { B2ट } \\ & 0.5 \\ & \text { Gr/w } \end{aligned}$	$\begin{aligned} & 6 \\ & 0.85 \\ & \text { WIG } \end{aligned}$	$\begin{aligned} & 29 \\ & 0.85 \\ & L / Y \end{aligned}$	$60 A$ 0.5 G / R	

Connecting Left Front
Door Wiring Harness 1

Connecting Floor Wiring Harness 1

Body Electric Apparatus

(2010-4G69-2.5TCI-4D20 Left Hand Drive, H3 Shifted to H5 Interior Trim) - 12
[H3 Shifted to H5 Interior Trim Gasoline Model II (H3 Shifted to H5 Interior Trim Gasoline Model I)]

$\begin{gathered} 78 \\ \begin{array}{c} \text { Br } \\ 0.35 \end{array} \end{gathered}$	$\begin{aligned} & 84 \\ & \hline \text { LB } \\ & 0.35 \end{aligned}$	$\begin{gathered} 306 \\ \text { RW } \\ 0.35 \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{yB} \\ 0.35 \\ \hline 0.3 \end{gathered}$	$\begin{gathered} 600 \\ 6 \mathrm{CR} \\ 0.85 \end{gathered}$	$\begin{aligned} & \mathrm{Boz} \\ & \text { RB } \\ & 0.85 \end{aligned}$	$\begin{gathered} 89 \\ 6 \\ 0.35 \end{gathered}$	$\begin{gathered} 318 \\ 6 . \\ 0.35 \\ 0 . \end{gathered}$	$\begin{aligned} & \text { Bol } \\ & \text { RP } \\ & 0.85 \end{aligned}$	$\begin{gathered} 305 \\ \text { LR } \\ 0.85 \\ \hline 0.3 \end{gathered}$	
				74 LW 0.5	28 y y 0.5	42D cV 0.85	$\begin{aligned} & \text { ciob } \\ & \text { Liv } \\ & 1.25 \end{aligned}$	38 YG 0.85	$\begin{aligned} & \text { Bo3 } \\ & \text { BR } \\ & 0.5 \end{aligned}$	

> Connecting Engine Compartment Wiring Harness 1

Connecting Instrument
Wiring Harness 1

$\begin{gathered} 1 \\ \hline 282 \\ \mathrm{G} / \mathrm{L} \\ 0.5 \\ \hline \end{gathered}$	401	63A	41A	E44B	311	281	71A	47A	402	46A
	L	$\mathrm{Br} / \mathrm{Gr}$	L/R	R/Y	R/Y	G/R	R/G	Y/B	W/B	
	0.5	0.5	0.85	0.5	0.5	0.5	0.5	0.5	0.5	
	173A	95A	404	403B	79A	263	116	511	D44C	
	R/Gr	L/0	Br	R	L	0.85	R/W	0.5	R/L	
	0.5	0.5	0.5	1.25	0.5	R/W	0.5	L/B	0.5	

Connecting Instrument
Wiring Harness 4

Connecting Engine Compartment
Wiring Harness 4

Tighten the self-lock piece

Connecting Engine Compartment Wiring Harness

Connecting Cockpit
Wiring Harness

Connecting Left Rear Door Wiring Harness 1

Connecting Cockpit Wiring Harness 1

26

Connecting Tail Gate 2

Connecting Tail Gate
Transition Wiring Harness 2

Diesel Model (difference with 2010 Gasoline Model I)

Connecting Engine Compartment Wiring Harness 1

Connecting Instrument Panel and

Connecting Instrument Wiring Harness 4

Connecting Engine Compartment Wiring Harness 2

Connecting Engine Compartment Wiring Harness 1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\square}

\hline $$
\begin{aligned}
& 46 \\
& 0.5 \\
& 1 \pi / R
\end{aligned}
$$ \& $$
\begin{aligned}
& 402 \\
& 0.2 \\
& 0 / / B
\end{aligned}
$$ \& \& \& $$
\begin{aligned}
& 17 \\
& 0.5 \\
& \text { YB }
\end{aligned}
$$ \& $$
\begin{aligned}
& 71 \\
& 0.35 \\
& 8 / B / B
\end{aligned}
$$

\hline $$
\begin{aligned}
& 2811 \\
& 0.35 \\
& 6.7
\end{aligned}
$$ \& $$
\begin{aligned}
& 34 \\
& 0.85 \\
& 0.8
\end{aligned}
$$ \& $$
\begin{aligned}
& 84 . \\
& \begin{array}{l}
8.35 \\
0.31
\end{array}
\end{aligned}
$$ \& \& $$
\begin{aligned}
& 638 \\
& \begin{array}{c}
6.5 \\
B r
\end{array}, \\
& B r
\end{aligned}
$$ \& 401

0.5
1

\hline $$
\begin{aligned}
& \text { 2825 } \\
& 0.35 \\
& 6 / /
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& \mathrm{DH} 4 . \\
& 0.35 \\
& \mathrm{RLL}
\end{aligned}
$$
\] \& 517

0.85

$1 / 1$ \& $$
\begin{aligned}
& 116 \\
& 0.5 \\
& k / 1 /
\end{aligned}
$$ \&

\hline \& lig
0
0.5
1 \& 4038
1.25

R \& 104 \& \[
$$
\begin{aligned}
& 95 \\
& 0.35 \\
& 0 . / /{ }^{2} \mathrm{r}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 311 \\
& 0.35 \\
& \text { Ry }
\end{aligned}
$$
\]

\hline
\end{tabular}

Connecting Engine Compartment Wiring Harness 4

Connecting Engine Compartment Wiring Harness 3

Headlamp (2010)

Left Headlamp

Right Headlamp

Headlamp (H3 Shifted to H5 Interior Trim)

Control Switch Assembly

Control Switch Assembly

Control Switch Assembly
(H3 Shifted to H5 Interior Trim)
H3 Shifted to H5 Interior Trim

High Beam of Left Headlamp

High Beam of Right Headlamp

High Beam of Right Headlamp
(H3 Shifted to H5 Interior Trim)

(H3 Shifted to H5 Interior Trim)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 842 \\
\& 0.35 \\
\& 6 N \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
50 \\
0.5 \\
0. \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 116 \\
\& \begin{array}{l}
16 \\
\mathrm{R} / \mathrm{F} \\
\hline
\end{array} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 50 \\
\& 0.5 \\
\& B \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 283.35 \\
\& 60 / 15 \\
\& \hline 6
\end{aligned}
\] \& \multicolumn{2}{|l|}{} \& \[
\begin{aligned}
\& 284 \\
\& 0.35 \\
\& 0 / 5
\end{aligned}
\] \& 892
0.35
\(0.1 / 2\) \& \[
\begin{aligned}
\& 254 \\
\& 0.5 \\
\& 0.3 \\
\& \hline 6
\end{aligned}
\] \& 151
0.35
6.15 \& 50
0.5
8 \\
\hline \begin{tabular}{l}
¢0, \\
\\
0.5 \\
\hline
\end{tabular} \& 50
0
0
0.5 \& \[
\begin{aligned}
\& 30 \\
\& \begin{array}{l}
30 \\
Y / L_{5}
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 \mathrm{~A} \\
\& 0.5 \\
\& 0.5 / 6
\end{aligned}
\] \& \[
\begin{aligned}
\& 1019 \\
\& 0.85 \\
\& 6 / 8.85
\end{aligned}
\] \& 32

0.85
0. \& \& (${ }^{8182}$ \& B380

0.35
L/Y \& \& B60

$\substack{\text { c. } \\ 6 / \mathrm{R}}$ \& $$
\begin{aligned}
& 254 \\
& 0.5 \\
& 6 / B
\end{aligned}
$$

\hline
\end{tabular}

Combination Switch

Left Turn Light
$\underset{\text { Lamp }}{\text { Leff Font Fog }}$

Connecting BCM-A (2010)

Connecting BCM-A (H3 Shifted to 4 G63 Interior Trim)

$\underset{\substack{\text { Connecting Right Rear } \\ \text { Door Locking Mecha- }}}{ }$
$\underset{\substack{\text { Door Locking Mecha- } \\ \text { nism }}}{\text {. }}$

Electronic Control Clutch

Front Washer Motor

Body Electric Apparatus
(2010-4G69-2.5TCI-4D20 Left Hand Drive, H3 Shifted to H5 Interior Trim) - 22

$\underset{\text { Mounted Stop Lamp }}{\text { Connecting High }}$

Connecting Left License
Plate Lamp

Connecting Right
License Plate Lamp

Connecting Left
Rear Fog Lamp

Connecting Rear Defrost nnecting Rear Defro
Positive Pole

$\underset{\text { Rear Fog Lamp }}{\text { Connecting Right }}$

Connecting Rear De frost Negative Pole

Connecting Rain Sensor

Lighting System (2010)
 Combination Headlamp Assembly
 Replace

1. Seperate the wire connectors of the battery negative pole;
2. Remove the front bumper and grill;

3. Unscrew the four bolts securing the combination headlamp, seperate the wire connectors of the combination headlamp, and remove the combination headlamp assembly.
4. Remove high-beam (Figure 2) and low-beam (Figure 1) bulbs
(a) Rotate the sealing cover counterclockwise;
(b) Pull out the plug;
(c) Press the circlip securing the bulb, and remove the bulb
5. Remove the front position lamp bulb
(a) Rotate the sealing cover counterclockwise (Figure 2);
(b) Pull the bulb out from the bulb socket.
6. Remove the front turn light bulb
(a) Rotate front turn light bulb socket counterclockwise (Figure 3);
(b) Press the bulb and rotate counterclockwise, to remove it from the bulb socket.
7. Remove the bulb of daytime running lamp
(a) Rotate daytime running lamp socket counterclockwise (Figure 4);
(b) Press the bulb and rotate counterclockwise, to remove it from the bulb socket.
8. Mount the combination headlamp assembly The mounting order is opposite to the removal order.

Adjustment

For headlamp aiming adjustment, adjustment of headlamp adjusting screw can help to adjust the headlamp light point.

1. Position A refers to the left-right adjusting screw hole of low beam. Rotate the screw hole clockwise to turn the low beam rightward with a crosshead screwdriver, otherwise, leftward;
2. Position B refers to the up-down adjusting screw hole of low beam. Rotate the screw hole clockwise to turn the low beam downward with a crosshead screwdriver, otherwise, upward;
3. Position C refers to the left-right adjusting screw hole of high beam. Rotate the screw hole clockwise to turn the high beam rightward with a crosshead screwdriver, otherwise, leftward;
4. Position D refers to the up-down adjusting screw hole of high beam. Rotate the screw hole clockwise to turn the high beam downward with a crosshead screwdriver, otherwise, upward;

5. Remove the front fog lamp bulb

Rotate the bulb socket counterclockwise, and remove the front fog lamp bulb;
6. Mount the front fog lamp assembly

The mounting order is opposite to the removal order.

Rear Combination Lamp Assembly

Replace

1. Seperate the wire connectors of the battery negative pole;
2. Remove the four retaining bolts, seperate the wire connectors of rear combination lamp, and remove the upper and lower rear combination lamp assemblies;

3. Mount the rear combination lamp assembly

The mounting order of rear combination lamp is opposite to the removal order.

Rear fog lamp assembly

Replace

1. Seperate the wire connectors of the battery negative pole;
2. Remove the rear bumper, and seperate the rear fog lamp wire connector;
3. Unscrew the three screws securing the rear fog lamp, and then remove the rear fog lamp from the rear bumper;
4. Remove the bulb
(a) Rotate the bulb socket counterclockwise;
(b) Rotate the bulb off from the lamp socket;
5. Mount the rear fog lamp assembly

The mounting order is opposite to the removal order.

Body Electric Apparatus (2010-4D20AT)

Function Chart for Numbered Pinsof Intermediate Connection of Wiring Harness2
Relationship between Wiring Harnessesand Connector Connection Number Chart8
BCM 9

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness

Connecting Power Supply Wiring Harness 1

Connecting Power Supply Wiring Harness B

Connecting Engine Wiring Harness 1

Connecting Instrument Panel and Console Wiring Harness 4

Connecting Engine Compartment Wiring Harness

Connecting Engine Compartment Wiring Harness 4

Connecting Instrument Panel and Console Wiring Harness 3

Connecting Engine Compartment Wiring Harness 3

Connecting Instrument Panel and Console Wiring Harness 1

$\begin{aligned} & A 39 \mathrm{~A} \\ & 0.5 \\ & \mathrm{Br} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { A42A } \\ & 0.5 \\ & \text { Br/G } \\ & \hline \end{aligned}$				122 0.5 $6 / R$
$\begin{aligned} & 74 \\ & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 81 \\ & 0.5 \\ & \mathrm{p} \end{aligned}$	$\begin{aligned} & 80 \\ & 0.5 \\ & 1 \% \end{aligned}$		$\begin{aligned} & 90 \\ & 0.5 \\ & \mathrm{~L} / \mathrm{T} \end{aligned}$	$\begin{aligned} & 31 \\ & 1.25 \\ & 0 / L \end{aligned}$
$\begin{aligned} & 83 \\ & 0.5 \\ & W / L \end{aligned}$	$\begin{aligned} & 82 \\ & 0.5 \\ & 1 \pi / B \end{aligned}$	\square	\square	$\begin{aligned} & 1835 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 182 \\ & 1.25 \\ & Y \end{aligned}$
50P 2.0 B	$\begin{aligned} & 85 \\ & 0.5 \\ & P / Y \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 0.5 \\ & \mathrm{G} / \mathrm{B} \end{aligned}$	$\begin{aligned} & 191 \\ & 0.85 \\ & G / R \end{aligned}$	$\begin{aligned} & 380 \\ & 1.25 \\ & \mathrm{~L} / \mathrm{Y} \end{aligned}$	$\begin{aligned} & 184 \mathrm{~A} \\ & 1.25 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$

Connecting Instrument Panel and Console Wiring Harness 2

Connecting Cockpit Wiring Harness

Connecting Cockpit
Wiring Harness 1A
Connecting Cockpit Wiring Harness 1B

Connecting Instrument Wiring Harness 1

37 0.5 6	261 20 R	$>$	T01 0.5 Bra 10	(102
12	${ }_{0}^{7} 8$	162	${ }^{742}$	T41
12 A	${ }^{1.85}$		$\begin{aligned} & 0.5 \\ & { }_{B, W} \end{aligned}$	$\begin{aligned} & 0.5 \\ & B_{r} \end{aligned}$
69a	375	\square	${ }^{\text {T31 }}$	
0.85	0.5		0.5	0.5
GY	GB		Bir	Bigr
42				
0.85	0.5	${ }^{2.0}$	0.5	0.5
${ }_{6 N}$	6,	${ }^{8 r}$	${ }_{\text {Bir }}$	${ }_{\text {bir }}$

Connecting Instrument Wiring Harness 2

$\begin{aligned} & B 12 \\ & 0.5 \\ & G / B \end{aligned}$	7A 0.85 BM			T01 0.5 Bra	T02 0.5 Br
B22	6	29	504 H	60A	34 C
0.5	0.85	0.85	0.5	0.5	0.5
Grw	WIG	LY	WL	G/R	WB

Connecting Left Front Door Wiring Harness 1

Connecting Instrument Panel Wiring Harness

\square		\square	\square		
504	163		135	34	50
0.5	0.5		0.85	0.5	0.85
W/L	Br/B		LW	W/B	B
31	895	183		390	771
0.5	0.5	0.5		0.5	0.5
OLL	G/R	LR		G/Y	Y

Connecting Cockpit Wiring Harness

Connecting Cockpit Wiring Harness 1

260B 2.0 RIG	155 2.0 RW		18 0.85 R/L	$50 U$ 2.0 B
12 A	13A	22	21	20
0.5	0.5	0.85	21A	0.85
Gr/B	Gr/R	RY		Y/W

Connecting Left Front Door Wiring Harness 2

50 2.0 B	18 0.85 R/L			$\begin{aligned} & 155 \\ & 2.0 \\ & R W \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & 2.0 \\ & R / G \\ & \hline \end{aligned}$
20	21	22	19	13	12
0.85	0.85	0.85	0.5	0.85	0.85
Y/W	G	RY	V	Gr / R	Gr/B

Connecting Cockpit Wiring Harness 2

Connecting Frame Wiring Harness

				$\square \square^{\prime}$	
				0.5 YR	0.85 $6 /$
69	610	D50	${ }_{611}$	612	50
0.5	0.5	0.5	0.5	${ }^{0.5}$	1.25
GB	6/R	B	GL	GN	B

Connecting Floor Wiring Harness

$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$			$\begin{aligned} & 7 E \\ & 0.85 \\ & B N \end{aligned}$	$\begin{aligned} & \text { 6E } \\ & 0.85 \\ & \text { WIG } \end{aligned}$
261	18C	26	50 M	29 B
2.0	0.85	0.85	2.0	0.85
R	RL	YR	2.0	LY

Connecting Right Front Door Wiring Harness 1

155 2.0 RW	$\begin{aligned} & 21 A \\ & 0.85 \\ & G \end{aligned}$			$\begin{aligned} & \hline \text { T41 } \\ & 0.5 \\ & B r / R \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} \cdot \mathrm{~B} \end{aligned}$
42	T42	504G	B24	34	13
0.5	0.5	0.5	0.5	0.5	0.5
G/	Br'W	W/L	Gr/W	W/B	Gr/R

Connecting Right Front
Door Wiring Harness 2

		261 A
		2.0

Connecting Right Rear Door Wiring Harness 1

		$\begin{aligned} & 501 \\ & 0.5 \\ & \text { Wh } \end{aligned}$
T32	34	18A
0.5	0.5	0.85
Brigr	WB	RL

Connecting Right Rear Door Wiring Harness 2

C16

0.85 W/G	0.85 BW			24 0.85 B/G
29	50	26	18	261
0.85	2.0	0.85	0.85	2.0
L/Y	B	Y/R	RLL	R

Connecting Cockpit Wiring Harness 1

$\begin{aligned} & 12 \\ & 0.5 \\ & \mathrm{Gr} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { T41 } \\ & \text { T41A } \end{aligned}$			21 0.85 G	$\begin{aligned} & 155 \\ & 2.0 \\ & \text { RW } \end{aligned}$
13	34	B24	504		42
0.5	0.5	0.5	0.5		0.5
Gr/R	W/B	Grw	W/L		GN

Connecting Cockpit Wiring Harness 2

$\begin{aligned} & 261 \\ & 2.0 \\ & \mathrm{R} \\ & \hline \end{aligned}$		
7	50	6
0.85	2.0	0.85
B/W	B	WIG

Connecting Floor
Wiring Harness 1

Connecting Floor Wiring Harness 2

6C 0.85 WIG				$\begin{aligned} & \text { 50B } \\ & 2.0 \\ & B \end{aligned}$	$\begin{aligned} & 260 \mathrm{~A} \\ & 2.0 \\ & \text { R/G } \end{aligned}$
T51	T52	7 C	34	504	18B
0.5	0.5	0.85	0.5	0.5	0.85
Br/G	Br / B	B/W	W	VIL	RL

Connecting Left Rear Door Wiring Harness

$\begin{aligned} & 260 \\ & 2.0 \\ & \text { RG } \\ & \hline \end{aligned}$	50 2.0 B				$\begin{aligned} & 6 \\ & 0.85 \\ & \text { W/G } \end{aligned}$
18	504	34	7		T51
0.85	0.5	0.5	0.85	T52A	T51A

Connecting Floor Wiring Harness

Connecting Back Door Transition Wiring Harness 2

Connecting Back Door
Transition Wiring Harness 1

$\begin{aligned} & \text { C44 } \\ & 0.5 \\ & \text { RL } \end{aligned}$			$\begin{aligned} & 30 \\ & 0.85 \\ & Y \Omega \end{aligned}$	$\begin{aligned} & 29 \\ & 1.25 \\ & 1 \% \end{aligned}$
T50	50	8	B74	B73
0.5	1.25	0.85	0.5	0.85
B	B	OrlG	B/R	B/R

Connecting Cockpit Wiring Harness

Connecting Cockpit
Wiring Harness 1

Connecting Back
Door Wiring Harness 1

Connecting Back Door Transition Wiring Harness 2

Connecting Reversing Radar Transition Wiring Harness

Connecting Cockpit Wiring Harness
-26

Connecting Reversing
Radar Wiring Harness 1

$\underset{\text { Connecting Reversing }}{\text { Radar Wiring Harness } 2}$
$-\mathrm{C27}$
$-\mathrm{C28}$

$\underset{\substack{\text { Connecting Seat } \\ \text { Heating Wiring Harne }}}{ }$
Heating Wiring Harness
$-\mathrm{C29}$

Connecting License
Connecting License
Plate Wiring Harness

Connecting Transition
Wiring Harness 1

Connecting Transition
Wiring Harness 2

Connecting Cockpit
Wiring Harness

Connecting Back
Door Wiring Harness

Body Electric Apparatus (2011)

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness 2
Air Conditioner 4
Electrical Diagram of Folding Rearview Mirror 5
Folding Rearview Mirror 6

Function Chart for Numbered Pins of Intermediate Connection of Wiring Harness

[4G69 Engine (on the basis of the left hand drive of body electric apparatus K5-4G69)]

	ㄷ. ${ }^{0} \mathrm{O}$ ¢	ミ
	\% $\overbrace{\circ}^{\circ}$	\#
		$\stackrel{9}{9} \stackrel{0}{0}=$
	Nicc	\%
	18\% $\stackrel{4}{0} \stackrel{0}{0}$	¢ ¢ ¢ ¢ ¢

Connecting Cockpit Wiring Harness 1A (connecting floor wiring harness 1A)

$\begin{aligned} & 260 B \\ & 2.0 \\ & R / G \end{aligned}$	$\begin{aligned} & 8 \\ & 0.85 \\ & 0 / 6 \end{aligned}$	$\begin{aligned} & 30 \\ & 0.85 \\ & \mathrm{Y} / \mathrm{L} \end{aligned}$	$\begin{aligned} & 18 \\ & 0.35 \\ & \mathrm{~W} \end{aligned}$
	$\begin{aligned} & 26 \\ & 0.85 \\ & Y / R \end{aligned}$	$\begin{aligned} & 33 \\ & 0.85 \\ & R / B \end{aligned}$	$\begin{aligned} & 163 \\ & 1.25 \\ & L / R \end{aligned}$
$\begin{aligned} & 155 \\ & 3.0 \\ & W / R \end{aligned}$	$\begin{aligned} & 32 \\ & 0.85 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.85 \\ & Y / W \end{aligned}$	
	$\begin{aligned} & 60 \mathrm{~B} \\ & 0.85 \\ & \mathrm{G} / \mathrm{R} \end{aligned}$	$\begin{aligned} & 22 \\ & 0.85 \\ & \mathrm{R} / \mathrm{Y} \end{aligned}$	
	$\begin{aligned} & 21 \\ & 0.85 \\ & G \end{aligned}$	$\begin{aligned} & 24 \\ & 0.85 \\ & B / G \end{aligned}$	$\begin{aligned} & \text { B33 } \\ & 0.85 \\ & R / B \end{aligned}$

Connecting Cockpit Wiring Harness 1B (connecting floor wiring harness 1B)

Connecting Instrument Wiring Harness 1A

Connecting Instrument
Wiring Harness 1B

$\begin{aligned} & 23 \\ & 0.5 \\ & Y \end{aligned}$	$\begin{aligned} & 24 \\ & 0.85 \\ & \mathrm{~B} / \mathrm{G} \\ & \hline \end{aligned}$			$\begin{aligned} & 7 \mathrm{E} \\ & 0.85 \\ & B / W \end{aligned}$	$\begin{aligned} & 6 \mathrm{E} \\ & 0.85 \\ & \mathrm{~W} / \mathrm{G} \end{aligned}$
27	261	18 C	26	50 M	29 B
0.5	2.0	0.85	0.85	2.0	0.85
Y/R	R	R/L	Y/R	.	L/Y

Connecting Right Front Door Wiring Harness 1

6 0.85 W/G	$\begin{aligned} & 7 \\ & 0.85 \\ & \text { B/W } \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 24 \\ & 0.85 \\ & B / G \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 0.5 \\ & \mathrm{Y} \\ & \hline \end{aligned}$
29	50	26	18	261	27
0.85	2.0	0.85	0.85	2.0	0.5
L/Y	B	Y/R	R/L	R	Y/R

Connecting Cockpit Wiring Harness 1

(S) $90 \mathrm{~mm} * 30 \mathrm{~mm} * 5 \mathrm{~mm}$

260B 2.0 R/G	155 2.0 R / W		$\begin{aligned} & 18 \\ & 0.85 \\ & R / L \end{aligned}$	$\begin{aligned} & 50 \mathrm{U} \\ & 2.0 \\ & B \end{aligned}$	23 0.5 Y
12A	13 A	22		20	27
0.5	0.5	0.85		0.85	0.5
Gr/B	Gr / R	R/Y	21A	Y/W	Y/R

Connecting Left Front Door Wiring Harness 2

$\begin{aligned} & 23 \\ & 0.5 \\ & Y \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 2.0 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 0.85 \\ & \mathrm{R} / \mathrm{L} \end{aligned}$			$\begin{aligned} & 155 \\ & 2.0 \\ & R / W \end{aligned}$	$\begin{aligned} & \hline 260 \\ & 2.0 \\ & \text { R/G } \end{aligned}$
27	20	21	22	19	13	12
0.5	0.85	0.85	0.85	0.5	0.85	0.85
Y/R	Y/W	G	R/Y	V	Gr/R	Gr/B

Connecting Cockpit Wiring Harness 2
[4D20 Engine (on the basis of the body electric apparatus K5-N2)]

Connecting Cockpit Wiring Harness 1 A (connecting floor wiring harness 1 A)

$\begin{aligned} & 260 \mathrm{~B} \\ & 2.0 \\ & \mathrm{R} / \mathrm{G} \end{aligned}$	$\begin{aligned} & 8 \\ & 0.85 \\ & 0 / G \end{aligned}$	$\begin{aligned} & 30 \\ & 0.85 \\ & Y / L \end{aligned}$	$\begin{aligned} & 18 \\ & 0.35 \\ & W \end{aligned}$
	$\begin{aligned} & 26 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 33 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 163 \\ & 1.25 \end{aligned}$
$\begin{aligned} & 155 \\ & 3.0 \\ & W / R \end{aligned}$	Y/R	R/B	L/R
	32	20	
	$\begin{aligned} & 0.85 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.85 \\ & Y / V \end{aligned}$	
	$\begin{aligned} & 60 B \\ & 0.85 \\ & G / R \end{aligned}$	$\begin{aligned} & 22 \\ & 0.85 \\ & \mathrm{R} / \mathrm{Y} \end{aligned}$	
	21	24	B33
	0.85	0.85	0.85
	G	B/G	R/B

Connecting Cockpit Wiring Harness 1B (connecting floor wiring harness 1B)

Connecting Instrument Wiring Harness 1A

Connecting Instrument Wiring Harness 1B

Connecting Right Front
Door Wiring Harness 1

6 0.85 W/G	7 0.85 B/W			24 0.85 B/G	23 0.5 Y
29	50	26	18	261	27
0.85	2.0	0.85	0.85	2.0	0.5
L/Y	B	Y/R	R/L	R	Y/R

Connecting Cockpit Wiring Harness 1
(S) $90 \mathrm{~mm} * 30 \mathrm{~mm} * 5 \mathrm{~mm}$

260B 2.0 R/G	155 2.0 R / W		$\begin{aligned} & 18 \\ & 0.85 \\ & R / L \end{aligned}$	$\begin{aligned} & 50 \mathrm{U} \\ & 2.0 \\ & B \end{aligned}$	23 0.5 Y
12A	13 A	22		20	27
0.5	0.5	0.85		0.85	0.5
Gr/B	Gr / R	R/Y	21A	Y/W	Y/R

$\begin{aligned} & 23 \\ & 0.5 \\ & Y \end{aligned}$	$\begin{aligned} & 50 \\ & 2.0 \\ & B \end{aligned}$	$\begin{aligned} & 18 \\ & 0.85 \\ & \text { R/L } \end{aligned}$			$\begin{aligned} & 155 \\ & 2.0 \\ & R / W \end{aligned}$	$\begin{aligned} & 260 \\ & 2.0 \\ & \text { R/G } \end{aligned}$
27	20	21	22	19	13	12
0.5	0.85	0.85	0.85	0.5	0.85	0.85
Y/R	Y/W	G	R/Y	V	Gr/R	Gr/B

Connecting Left Front
Door Wiring Harness 2

[^2]
Air Conditioner

23	26	22	21	24	20	79	50M	27
0.5	0. 85	0.85	0.85	0.85	0.85	0. 85	0.85	0.5
Y	Y/R	R/Y	G	B/G	Y/W	L	B	Y/R

Electric Rearview Mirror Switch

27	23	21	20	22
0.5	0.5	0.85	0. 85	0.85
Y/R	Y	G	Y/W	R/Y
50D			60	29
0.85			0.5	0.85
B			G/R	L/Y

Connecting Left Electric Rearview Mirror H:DJ7081-2.3-11

27	23	21	24	26
0.5	0.5	0.85	0.85	0.85 Y / R
Y	G	B / G	Y / R	
50 A			42 0.85	
B		0.5 G / V	29 $\mathrm{~B} / 85$ $\mathrm{~L} / \mathrm{Y}$	

Connecting Right Electric Rearview Mirror H:DJ7081-2.3-11

Folding Rearview Mirror

Fault Symptom Table

Tips:
Fault causes can be determined through the table below. In the "Suspicious Position" column of this table, fault causes are listed on the basis of degree of possibility. It is possible to check all symptoms by inspecting the suspicious positions in the listed order. Replace components when necessary.

Symptom				
Rearview mirrors do not work	Fuse			
	Outside Rearview Mirror Switch Assembly			
	Outside Rearview Mirror Assembly			
	Wiring Harness			
Rearview mirror works abnormally	Outside Rearview Mirror Switch Assembly			
	Outside Rearview Mirror Assembly			
	Wiring Harness			

Element Diagram

Removal of Rearview Mirror Assembly

1. Insert the clip driver into the clearance between the retaining clip and the outside rearview mirror triangle, and pry and loosen it.
Note: before using the clip driver, its head must be wrapped by tape.
2. Remove the outside rearview mirror triangle.
3. Remove the three self scrap removal hexagon flange nuts, and disconnect the electric heating defrost connector.
4. Remove the outside rearview mirror

Mounting of Rearview Mirror Assembly

The mounting order is opposite to the removal order.

Air conditioning System (K5-4G63-4G69-2.5TCI LHD)

Part Drawing of Air-conditioning System (A/C)............. 2
A/C control system structure \qquad
Instructions to A/C system keys (See Fig. A) \qquad
A/C controller plug and socket and definitions
(Fig. A) \qquad
System trouble diagnosis procedures (Fig. A) 4
Port definition (Fig. B) \qquad
Self-checking process (Fig. B) \qquad
Diagnostic trouble code (DTC) display (Fig. B) 7
Diagnostic trouble code (Fig. B) \qquad 7

Part Drawing of Air-conditioning System (A/C)

A/C control system structure

The A / C control system is mainly comprised of A / C control unit, sensor and actuator element. Wherein, indoor temperature sensor and A / C control unit are integrated onto A / C control panel.

SN	Name	SN	Name
1	Controller panel	8	OFF key
2	Air speed adjusting knob	9	Face blowing key
3	Temperature adjusting knob	10	Foot blowing key
4	AC key	11	AUTO key
5	Circulation key	12	Foot blowing and defrost key
6	Defrost key	13	Face and foot blowing key
7	Rear defrost key		

Instructions to A/C system keys (See Fig. A)

Air speed key and temperature control key of K109 are realized in the form of adjusting knob. However, K1 is configured with feather-touch function keys. Accordingly, they are differently handled.

1. Air speed adjusting knob

Under electrical control, the highest air speed is still kept after A/C is restarted next time upon power failure or enabled OFF key as A/C is at its highest air speed. However, the air speed is switched when the air volume increases to the max. volume. Under AUTO mode, the air speed is still under automatic control.
2. Temperature adjusting knob

Under modes of $\mathrm{COOL}\left(17^{\circ} \mathrm{C}\right)$ or $\mathrm{HOT}\left(32^{\circ} \mathrm{C}\right)$, exit automatic control before these modes prevail. Under the mode of COOL or HOT, AUTO key is unavailable. AUTO is accessible only after exiting the state of max. cooling capacity or max. warming capacity.

A/C controller plug and socket and definitions (Fig. A)
 Model of plug and socket: AMP C-966658-1 (Green)

Definitions of plug and socket (Fig. A)

SN	Port	Signal	Voltage	Current	Remarks
1	A1	IG2	12 V	$<500 \mathrm{~mA}$	
2	A2	GND	OV	$<500 \mathrm{~mA}$	
3	A3	HS	0V/12V	$<150 \mathrm{~mA}$	High-speed relay drive (available upon low value)
4	A4	T+	0V/12V	120 mA	Temperature actuator positive drive
5	A5	M +	0V/12V	120 mA	Mode actuator positive drive
6	A6	+	0V/12V	120 mA	Circulation actuator positive drive
7	A7	$+5 \mathrm{~V}$	+5V	10 mA	$+5 \mathrm{~V}$
8	A8	SGND	OV	12 mA	Simulating earth signal
9	A9	M F/B	0V-5V	5 mA	Mode actuator feedback signal
10	A10				
11	A11	Incar	0V-5V	2 mA	Indoor temperature sensor signal
12	A12	TB	0V-12V	4 mA	Fan speed regulating drive signal
13	A13	Vehicle Speed	0V/12V	2 mA	Vehicle speed signal
14	A14	Engine Speed	0V/12V	2 mA	Engine speed signal
15	A15	BCM F/B	0V/12V	2 mA	Rear defrost feedback signal
16	A16				
17	A17	IG2	12 V	$<500 \mathrm{~mA}$	
18	A18	GND	OV	$<500 \mathrm{~mA}$	
19	A19	Rear Defrost	0V/12V	<150mA	Rear defrost signal (available as low PWL is kept for 100 ms)
20	A20	T-	0V/12V	120 mA	Temperature actuator negative drive
21	A21	M-	0V/12V	120 mA	Mode actuator negative drive
22	A22	1-	0V/12V	120 mA	Circulation actuator negative drive
23	A23	A/C Req.	0V/12V	<700mA	Compressor request signal (available upon high va lue)
24	A24	Electrical Heating	0V/12V	<150mA	Electrical heating relay driver (available upon low value)
25	A25	T F/B	0V-5V	5 mA	Temperature actuator feedback signal
26	A26	Amb	0V-5V	2 mA	Ambient sensor signal
27	A27	Evap	0V-5V	2 mA	Evaporation sensor signal
28	A28	TC	0V-12V	1 mA	Fan voltage feedback
29	A29	EHD	0V/12V	1 mA	Electrical heating detection
30	A30	Water Temp.	0V-12V	2 mA	Water temperature sensor signal
31	A31	Fuel Heating	0V/12V	2 mA	Fuel heating signal
32	A32	Lamp	0V/12V	60 mA	Background light signal (PWM input)

System trouble diagnosis procedures (Fig. A)

1. Press AC key and circulation key synchronously and enter into failure detection state after 2 s .
2. Observe whether mode VENT, mode BL, mode FOOT, mode MIX, AUTO, defrost, back window heating and other indicator lamps flash to judge failures. Under normal operating conditions, these indicator lamps will not flash. Otherwise, the system encounters failures.
3. Press "OFF" to exit the failure detection mode and return to the state before failure detection.
4. Procedures of failure detection are listed in the table below.

Failure detec- tion point	Corresponding failu- re indicator lamp	Normal display	Failure display	Failure removal
Mode actuator	Face blowing in- dicator lamp	Nothing displayed	Flash	
Temperature actuator	Face and foot blo- wing indicator lamp	Nothing displayed	Flash	
Indoor tempera- ture sensor	Foot blowing in- dicator lamp	Nothing displayed	Flash	Tinc $=25^{\circ} \mathrm{C}$
Ambient tempe- rature sensor	Foot blowing and de- frost indicator lamp	Nothing displayed	Flash	Tamb $=20^{\circ} \mathrm{C}$
Evaporation tem- perature sensor	Automatic control in- dicator lamp	Nothing displayed	Flash	Tevap $=2^{\circ} \mathrm{C}$
Water tempera- ture sensor	Front defrost in- dicator lamp	Nothing displayed	Flash	Twat $=90^{\circ} \mathrm{C}$
Electrical hea- ting sensor	Rear defrost indicator lamp	Nothing displayed	Flash	

Fig. B

Outside air damper actuator

SN	Name	SN	Name
1	AUTO key	6	OFF key
2	Air volume increase key	7	Air circulation key
3	Air volume decrease key	8	Front defrost key
4	Mode key	9	Rear defrost key
5	A/C key	10	Temperature adjusting knob

Port definition (Fig. B)

Sheath model: AMP 966658-1 (Green)
Engaging sheath model: AMP 1534222-1 and AMP 1420000-1
Model of engaging plug and socket: AMP 928999-1

Port	Definition	Remarks
A1	Ignition power source +12 V	9-16V
A2	Power ground	
A3	High-speed relay control signal	Rated current $<150 \mathrm{~mA}$
A4	Temperature actuator positive drive signal	Rated current 120 mA and max. locking current 500 mA
A5	Mode actuator positive drive signal	Rated current 120 mA and max. locking current 500 mA
A6	Circulation actuator positive drive signal	Rated current 120 mA and max. locking current 500 mA
A7	+5V	4.75-5.25V
A8	Simulating earth signal	
A9	Mode actuator feedback signal	0-5V
	Null	
A10	Display screen background light brightness attenuation signal (available upon high value)	
A11	Indoor temperature sensor signal	2 mA
A12	Blower speed regulating drive signal	4 mA
A13	Vehicle speed signal	0/12V
A14	Engine speed signal	0/12V
A15	Rear defrost feedback signal	0/12V
A16	Null	
A17	Ignition power source +12 V	9-16V
A18	Power ground	
A19	Rear defrost signal	Low-level pulse signal (available after it is kept for 40 mS)
A20	Temperature actuator negative drive	Rated current 120 mA and max. locking current 500 mA
A21	Mode actuator negative drive	Rated current 120 mA and max. locking current 500 mA
A22	Circulation actuator negative drive	Rated current 120 mA and max. locking current 500 mA
A23	Compressor request signal	Rated current $<700 \mathrm{~mA}$
	Compressor request signal	Rated current $<150 \mathrm{~mA}$
A24	Electrical heating relay drive signal	Rated current $<150 \mathrm{~mA}$
A25	Temperature actuator feedback signal	0-5V
A26	Ambient sensor signal	2 mA
A27	Evaporation sensor signal	2 mA
A28	Blower voltage feedback	0-12V
A29	Electrical heating detection	0/12V
A30	Water temperature sensor signal	0-5V
A31	Fuel heating signal	0/12V
A32	Background light power source	PWM input

Self-checking process (Fig. B)

Diagnostic trouble code (DTC) display (Fig. B)

As for data display, two numbers to indicate set temperature are defined. Upon a trouble, related code is displayed. If no trouble, 00 is displayed. The data will be displayed every 0.5 s . The display duration is 0.5 s . Time interval of a trouble is 1 s . Every DTC is displayed twice. For example, as trouble 1 and 2 occurs, the display is shown in the Figure below.

Diagnostic trouble code (Fig. B)

SN	DTC	Description	Basis of judging the trouble
1	00	Normal	
2	11	Indoor sensor encounters short circuit or open circuit	Detected voltage is 0 V or 5 V
3	12	Outdoor sensor encounters short circuit or open circuit	Detected voltage is 0 V or 5 V
4	13	Evaporation sensor encounters short circuit or open circuit	Detected voltage is 0 V or 5 V
6	15	Mode motor feedback terminal encounters short circuit or open circuit	Mode motor feedback voltage is 0 V or 5 V
7	16	Mode motor encounters unfavorable drive	Mode damper motor is restricted
8	17	Cooling and warming motor feedback terminal encounters short circuit or open circuit	Feedback voltage of cooling and warming motor is 0 V or 5 V
9	18	Cooling and warming motor encounters unfavorable drive	Cooling and warming motor is restricted

[^0]: Connecting Left Rear
 Door Wiring Harness

[^1]: Connecting Cockpit Wiring Harness

[^2]: Connecting Cockpit
 Wiring Harness 2

